Source file signal_graph.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
open Base
let uid = Signal.uid
let deps = Signal.deps
type t = Signal.t list [@@deriving sexp_of]
let create t = t
let depth_first_search
?(deps = deps)
?(f_before = fun a _ -> a)
?(f_after = fun a _ -> a)
t
~init
=
let rec search1 signal ~set acc =
if Set.mem set (uid signal)
then acc, set
else (
let set = Set.add set (uid signal) in
let acc = f_before acc signal in
let acc, set = search (deps signal) acc ~set in
let acc = f_after acc signal in
acc, set)
and search t acc ~set =
List.fold t ~init:(acc, set) ~f:(fun (arg, set) s -> search1 s ~set arg)
in
fst (search t init ~set:(Set.empty (module Signal.Uid)))
;;
let fold t ~init ~f = depth_first_search t ~init ~f_before:f
let iter t ~f = depth_first_search t ~f_before:(fun _ s -> f s) ~init:()
let filter t ~f =
depth_first_search t ~init:[] ~f_before:(fun arg signal ->
if f signal then signal :: arg else arg)
;;
let inputs graph =
Or_error.try_with (fun () ->
depth_first_search graph ~init:[] ~f_before:(fun acc signal ->
let open Signal in
match signal with
| Wire { driver; _ } ->
if not (Signal.is_empty !driver)
then acc
else (
match names signal with
| [ _ ] -> signal :: acc
| [] ->
raise_s
[%message
"circuit input signal must have a port name (unassigned wire?)"
~input_signal:(signal : Signal.t)]
| _ ->
raise_s
[%message
"circuit input signal should only have one port name"
~input_signal:(signal : Signal.t)])
| _ -> acc))
;;
let outputs ?(validate = false) t =
Or_error.try_with (fun () ->
if validate
then
List.iter t ~f:(fun (output_signal : Signal.t) ->
let open Signal in
match output_signal with
| Wire _ ->
(match deps output_signal with
| [] | [ Empty ] ->
raise_s
[%message "circuit output signal is not driven" (output_signal : Signal.t)]
| _ ->
(match names output_signal with
| [ _ ] -> ()
| [] ->
raise_s
[%message
"circuit output signal must have a port name"
(output_signal : Signal.t)]
| _ ->
raise_s
[%message
"circuit output signal should only have one port name"
(output_signal : Signal.t)]))
| _ ->
raise_s
[%message "circuit output signal must be a wire" (output_signal : Signal.t)]);
t)
;;
let detect_combinational_loops t =
Or_error.try_with (fun () ->
let open Signal in
let module Signal_state = struct
type t =
| Unvisited
| Visiting
| Visited
[@@deriving sexp_of]
end
in
let state_by_uid : (Uid.t, Signal_state.t ref) Hashtbl.t =
Hashtbl.create (module Uid)
in
let signal_state signal =
Hashtbl.find_or_add state_by_uid (uid signal) ~default:(fun _ ->
ref Signal_state.Unvisited)
in
let set_state signal state = signal_state signal := state in
let breaks_a_cycle s = is_reg s || is_mem s || is_inst s || is_empty s in
let initial_visited = filter t ~f:breaks_a_cycle in
List.iter initial_visited ~f:(fun signal -> set_state signal Visited);
let rec dfs signal =
let state = signal_state signal in
match !state with
| Visited -> ()
| Visiting ->
raise_s [%message "combinational loop" ~through_signal:(signal : Signal.t)]
| Unvisited ->
state := Visiting;
List.iter (deps signal) ~f:dfs;
state := Visited
in
List.iter ~f:dfs (List.concat (t :: List.map initial_visited ~f:deps)))
;;
let normalize_uids t =
let open Signal in
let expecting_a_wire signal =
raise_s [%message "expecting a wire (internal error)" (signal : Signal.t)]
in
let not_expecting_a_wire signal =
raise_s [%message "not expecting a wire (internal error)" (signal : Signal.t)]
in
let new_signal_by_old_uid = Hashtbl.create (module Uid) in
let add_mapping ~old_signal ~new_signal =
Hashtbl.add_exn new_signal_by_old_uid ~key:(uid old_signal) ~data:new_signal
in
let new_signal signal = Hashtbl.find_exn new_signal_by_old_uid (uid signal) in
let id = ref 0L in
let fresh_id () =
id := Int64.( + ) !id 1L;
!id
in
let new_reg r =
{ reg_clock = new_signal r.reg_clock
; reg_clock_edge = r.reg_clock_edge
; reg_reset = new_signal r.reg_reset
; reg_reset_edge = r.reg_reset_edge
; reg_reset_value = new_signal r.reg_reset_value
; reg_clear = new_signal r.reg_clear
; reg_clear_level = r.reg_clear_level
; reg_clear_value = new_signal r.reg_clear_value
; reg_enable = new_signal r.reg_enable
}
in
let new_mem m =
{ mem_size = m.mem_size
; mem_read_address = new_signal m.mem_read_address
; mem_write_address = new_signal m.mem_write_address
; mem_write_data = new_signal m.mem_write_data
}
in
let new_write_port write_port =
{ write_clock = new_signal write_port.write_clock
; write_address = new_signal write_port.write_address
; write_enable = new_signal write_port.write_enable
; write_data = new_signal write_port.write_data
}
in
let rec rewrite_signal_upto_wires signal =
match Hashtbl.find new_signal_by_old_uid (uid signal) with
| Some x -> x
| None ->
let new_deps = List.map (deps signal) ~f:rewrite_signal_upto_wires in
let update_id id = { id with s_id = fresh_id (); s_deps = new_deps } in
let new_signal =
match signal with
| Empty -> Empty
| Const { signal_id; constant } ->
Const
{ signal_id = { signal_id with s_id = fresh_id (); s_deps = [] }; constant }
| Op2 { signal_id = id; op; arg_a; arg_b } ->
let arg_a = rewrite_signal_upto_wires arg_a in
let arg_b = rewrite_signal_upto_wires arg_b in
Op2
{ signal_id = { id with s_id = fresh_id (); s_deps = [ arg_a; arg_b ] }
; op
; arg_a
; arg_b
}
| Mux { signal_id; select; cases } ->
let select = rewrite_signal_upto_wires select in
let cases = List.map cases ~f:rewrite_signal_upto_wires in
Mux
{ signal_id = { signal_id with s_id = fresh_id (); s_deps = select :: cases }
; select
; cases
}
| Cat { signal_id; args } ->
let args = List.map args ~f:rewrite_signal_upto_wires in
Cat { signal_id = { signal_id with s_id = fresh_id (); s_deps = args }; args }
| Not { signal_id; arg } ->
let arg = rewrite_signal_upto_wires arg in
Not { signal_id = { signal_id with s_id = fresh_id (); s_deps = [ arg ] }; arg }
| Select { signal_id; arg; high; low } ->
let arg = rewrite_signal_upto_wires arg in
Select
{ signal_id = { signal_id with s_id = fresh_id (); s_deps = [ arg ] }
; arg
; high
; low
}
| Reg { signal_id; register; d } ->
let d = rewrite_signal_upto_wires d in
let register =
{ reg_clock = rewrite_signal_upto_wires register.reg_clock
; reg_clock_edge = register.reg_clock_edge
; reg_reset = rewrite_signal_upto_wires register.reg_reset
; reg_reset_edge = register.reg_reset_edge
; reg_reset_value = rewrite_signal_upto_wires register.reg_reset_value
; reg_clear = rewrite_signal_upto_wires register.reg_clear
; reg_clear_level = register.reg_clear_level
; reg_clear_value = rewrite_signal_upto_wires register.reg_clear_value
; reg_enable = rewrite_signal_upto_wires register.reg_enable
}
in
Reg
{ signal_id =
{ signal_id with
s_id = fresh_id ()
; s_deps =
[ d
; register.reg_clock
; register.reg_reset
; register.reg_reset_value
; register.reg_clear
; register.reg_clear_value
; register.reg_enable
]
}
; register
; d
}
| Mem { signal_id; extra_uid = _; register; memory } ->
Mem
{ signal_id = update_id signal_id
; extra_uid = fresh_id ()
; register = new_reg register
; memory = new_mem memory
}
| Multiport_mem { signal_id = id; size; write_ports } ->
Multiport_mem
{ signal_id = update_id id
; size
; write_ports = Array.map write_ports ~f:new_write_port
}
| Mem_read_port { signal_id = id; memory; read_address } ->
Mem_read_port
{ signal_id = update_id id
; memory = new_signal memory
; read_address = new_signal read_address
}
| Inst { signal_id; instantiation; _ } ->
let inputs =
List.map instantiation.inst_inputs ~f:(fun (name, input) ->
name, rewrite_signal_upto_wires input)
in
Inst
{ signal_id =
{ signal_id with s_id = fresh_id (); s_deps = List.map inputs ~f:snd }
; extra_uid = fresh_id ()
; instantiation = { instantiation with inst_inputs = inputs }
}
| Wire _ -> not_expecting_a_wire signal
in
add_mapping ~old_signal:signal ~new_signal;
new_signal
in
let old_wires = filter t ~f:is_wire in
List.iter old_wires ~f:(fun old_wire ->
add_mapping
~old_signal:old_wire
~new_signal:
(match old_wire with
| Wire { signal_id; _ } ->
Wire
{ signal_id = { signal_id with s_id = fresh_id () }
; driver = ref Signal.empty
}
| _ -> expecting_a_wire old_wire));
List.iter old_wires ~f:(function
| Wire { driver; _ } -> ignore (rewrite_signal_upto_wires !driver : Signal.t)
| signal -> expecting_a_wire signal);
List.iter old_wires ~f:(fun old_wire ->
match old_wire with
| Wire { driver; _ } ->
if not (Signal.is_empty !driver)
then (
let new_driver = new_signal !driver in
let new_wire = new_signal old_wire in
Signal.(new_wire <== new_driver))
| signal -> expecting_a_wire signal);
List.map t ~f:new_signal
;;
let fan_out_map ?(deps = Signal.deps) t =
depth_first_search
t
~init:(Map.empty (module Signal.Uid))
~f_before:(fun map signal ->
let target = Signal.uid signal in
List.fold (deps signal) ~init:map ~f:(fun map source ->
let source = Signal.uid source in
let fan_out = Map.find map source |> Option.value ~default:Signal.Uid_set.empty in
Map.set map ~key:source ~data:(Set.add fan_out target)))
;;
let fan_in_map ?(deps = Signal.deps) t =
depth_first_search
t
~init:(Map.empty (module Signal.Uid))
~f_before:(fun map signal ->
List.map (deps signal) ~f:Signal.uid
|> Set.of_list (module Signal.Uid)
|> fun data -> Map.set map ~key:(Signal.uid signal) ~data)
;;
let topological_sort ?(deps = Signal.deps) (graph : t) =
let module Node = struct
include Signal
let compare a b = Signal.Uid.compare (uid a) (uid b)
let hash s = Signal.Uid.hash (uid s)
let sexp_of_t = Signal.sexp_of_signal_recursive ~show_uids:false ~depth:0
end
in
let nodes, edges =
fold graph ~init:([], []) ~f:(fun (nodes, edges) to_ ->
( to_ :: nodes
, List.map (deps to_) ~f:(fun from -> { Topological_sort.Edge.from; to_ }) @ edges ))
in
Topological_sort.sort (module Node) ~what:Nodes_and_edge_endpoints ~nodes ~edges
|> Or_error.ok_exn
;;
let scheduling_deps (s : Signal.t) =
match s with
| Mem { memory; _ } -> [ memory.mem_read_address ]
| Mem_read_port { read_address; _ } -> [ read_address ]
| Reg _ -> []
| Multiport_mem _ -> []
| Empty | Const _ | Op2 _ | Mux _ | Cat _ | Not _ | Wire _ | Select _ | Inst _ ->
Signal.deps s
;;
let last_layer_of_nodes ~is_input graph =
let deps t = scheduling_deps t in
let rec visit_signal ((in_layer, _) : bool Map.M(Signal.Uid).t * bool) signal =
match Map.find in_layer (uid signal) with
| Some is_in_layer -> in_layer, is_in_layer
| None ->
if Signal.is_const signal
|| Signal.is_empty signal
|| Signal.is_multiport_mem signal
|| is_input signal
then
Map.set in_layer ~key:(uid signal) ~data:false, false
else if Signal.is_reg signal
then in_layer, true
else (
let in_layer, is_in_layer = fold_signals (in_layer, false) (deps signal) in
let is_in_layer = is_in_layer || Signal.is_mem_read_port signal in
Map.set in_layer ~key:(uid signal) ~data:is_in_layer, is_in_layer)
and fold_signals layer signals =
List.fold signals ~init:layer ~f:(fun (in_layer, is_in_layer) signal ->
let in_layer, is_in_layer' = visit_signal (in_layer, is_in_layer) signal in
in_layer, is_in_layer || is_in_layer')
in
let in_layer, _ = fold_signals (Map.empty (module Signal.Uid), false) graph in
Map.to_alist in_layer
|> List.filter_map ~f:(fun (uid, is_in_layer) -> if is_in_layer then Some uid else None)
;;