1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
open Base
open Cyclesim
module Out_channel = Stdio.Out_channel
let vcdcycle = 10
module Timescale = struct
type t =
| Fs of int
| Ps of int
| Ns of int
| Us of int
| Ms of int
| S of int
[@@deriving sexp_of]
let to_string t =
match t with
| Fs i -> [%string "%{i#Int}fs"]
| Ps i -> [%string "%{i#Int}ps"]
| Ns i -> [%string "%{i#Int}ns"]
| Us i -> [%string "%{i#Int}us"]
| Ms i -> [%string "%{i#Int}ms"]
| S i -> [%string "%{i#Int}s"]
;;
end
module Var = struct
module Type = struct
type t =
| Event
| Integer
| Parameter
| Real
| Reg
| Supply0
| Supply1
| Time
| Tri
| Triand
| Trior
| Trireg
| Tri0
| Tri1
| Want
| Wire
| Wor
[@@deriving sexp_of, compare, hash]
let to_string t = sexp_of_t t |> Sexp.to_string |> String.lowercase
end
type t =
{ typ : Type.t
; name : string
; id : string
; width : int
}
[@@deriving sexp_of, fields ~getters, compare, hash]
let create ?(typ = Type.Wire) ~name ~id ~width () = { typ; name; id; width }
let define chan { typ; name; id; width } =
Out_channel.output_string
chan
[%string "$var %{typ#Type} %{width#Int} %{id} %{name} $end\n"]
;;
let write_string chan { typ = _; name = _; id; width } bits =
if width = 1
then Out_channel.output_string chan [%string "%{bits}%{id}\n"]
else Out_channel.output_string chan [%string "b%{bits} %{id}\n"]
;;
let write_bits chan ({ typ = _; name = _; id = _; width } as t) bits =
if Bits.width bits <> width
then raise_s [%message "Invalid bit width" (t : t) (bits : Bits.t)];
write_string chan t (Bits.to_string bits)
;;
let write_four_state_vector
chan
({ typ = _; name = _; id = _; width } as t)
(four_state : Logic.Four_state_vector.t)
=
if Logic.Four_state_vector.width four_state <> width
then
raise_s
[%message "Invalid bit width" (t : t) (four_state : Logic.Four_state_vector.t)];
let s = List.map four_state ~f:Logic.Four_state.to_char |> String.of_char_list in
write_string chan t s
;;
module Generator = struct
type t = int ref
let min_id_char = 33
let max_id_char = 126
let id_char_range = max_id_char - min_id_char + 1
let create () = ref 0
let rec create_identifier x =
let y, left = x % id_char_range, x / id_char_range in
let c = Char.of_int_exn (y + min_id_char) in
if left <> 0 then c :: create_identifier (left - 1) else c :: []
;;
let next t =
let x = !t in
Int.incr t;
create_identifier x |> String.of_char_list
;;
end
end
module Scope = struct
module Type = struct
type t =
| Begin
| Fork
| Function
| Module
| Task
[@@deriving sexp_of]
let to_string t = sexp_of_t t |> Sexp.to_string |> String.lowercase
end
type t =
{ name : string
; typ : Type.t
; vars : Var.t list
; subscopes : t list
}
[@@deriving sexp_of, fields ~getters]
let create ?(subscopes = []) ?(typ = Type.Module) ~name ~vars () =
{ name; typ; vars; subscopes }
;;
let rec write chan { name; typ; vars; subscopes } =
Out_channel.output_string chan [%string "$scope %{typ#Type} %{name} $end\n"];
List.iter vars ~f:(Var.define chan);
List.iter subscopes ~f:(write chan);
Out_channel.output_string chan [%string "$upscope $end\n"]
;;
let rec all_vars t = List.concat ([ t.vars ] @ List.map t.subscopes ~f:all_vars)
end
module Config = struct
type t =
{ date : string
; version : string
; : string option
; timescale : Timescale.t
}
[@@deriving sexp_of]
let default =
{ date = "..."
; version = "Hardcaml"
; comment = Some "Hardware design in ocaml"
; timescale = Ns 1
}
;;
let write chan t =
Out_channel.output_string chan [%string "$date\n %{t.date}\n$end\n"];
Out_channel.output_string chan [%string "$version\n %{t.version}\n$end\n"];
Option.iter t.comment ~f:(fun ->
Out_channel.output_string chan [%string "$comment\n %{comment}\n$end\n"]);
Out_channel.output_string chan [%string "$timescale %{t.timescale#Timescale} $end\n"]
;;
end
type 'a trace =
{ var : Var.t
; data : 'a
; prev : string ref
}
let enddefinitions chan = Out_channel.output_string chan "$enddefinitions $end\n"
let dumpvars_as_x chan vars =
Out_channel.output_string chan "$dumpvars\n";
List.iter vars ~f:(fun v ->
Var.write_four_state_vector
chan
v
(List.init v.width ~f:(Fn.const Logic.Four_state.X)));
Out_channel.output_string chan "$end\n"
;;
let chan ~config ~scopes =
Config.write chan config;
List.iter scopes ~f:(Scope.write chan);
enddefinitions chan;
dumpvars_as_x chan (List.concat (List.map scopes ~f:Scope.all_vars))
;;
let write_time chan time = Out_channel.output_string chan [%string "#%{time#Int}\n"]
let wrap chan sim =
let var_generator = Var.Generator.create () in
let clock =
Var.create ~name:"clock" ~id:(Var.Generator.next var_generator) ~width:1 ()
in
let reset =
Var.create ~name:"reset" ~id:(Var.Generator.next var_generator) ~width:1 ()
in
let write_var v d = Var.write_string chan v d in
let create_var name width data =
{ var = Var.create ~name ~id:(Var.Generator.next var_generator) ~width ()
; data
; prev = ref (String.init width ~f:(fun _ -> 'x'))
}
in
let trace signals =
List.map signals ~f:(fun (name, s) -> create_var name (Bits.width !s) s)
in
let trace_internal (s : Cyclesim.Traced.internal_signal list) =
List.concat_map s ~f:(fun ({ signal = _; mangled_names } as trace) ->
let s = Cyclesim.lookup_node_or_reg sim trace |> Option.value_exn in
List.map mangled_names ~f:(fun name -> create_var name (Node.width_in_bits s) s))
in
let trace_in = trace (in_ports sim) in
let trace_out = trace (out_ports sim ~clock_edge:Before) in
let trace_internal = trace_internal (traced sim).internal_signals in
let trace_in =
List.filter trace_in ~f:(fun s ->
(not (String.equal (Var.name s.var) "clock"))
&& not (String.equal (Var.name s.var) "reset"))
in
let scopes =
[ Scope.create
~name:"inputs"
~vars:(clock :: reset :: List.map trace_in ~f:(fun t -> t.var))
()
; Scope.create ~name:"outputs" ~vars:(List.map trace_out ~f:(fun t -> t.var)) ()
; Scope.create ~name:"various" ~vars:(List.map trace_internal ~f:(fun t -> t.var)) ()
]
in
let () = write_header chan ~config:Config.default ~scopes in
let time = ref 0 in
write_header ();
let write_reset () =
write_time chan !time;
write_var clock "0";
write_var reset "1";
List.iter trace_in ~f:(fun t ->
let str = Bits.to_bstr !(t.data) in
write_var t.var str;
t.prev := str);
List.iter trace_out ~f:(fun t ->
let str = Bits.to_bstr !(t.data) in
write_var t.var str;
t.prev := str);
List.iter trace_internal ~f:(fun t ->
let str = Bits.to_bstr (Cyclesim.Node.to_bits t.data) in
write_var t.var str;
t.prev := str);
time := !time + vcdcycle
in
let write_cycle () =
write_time chan !time;
write_var clock "1";
write_var reset "0";
List.iter trace_in ~f:(fun t ->
let data = Bits.to_bstr !(t.data) in
if not (String.equal data !(t.prev))
then (
write_var t.var data;
t.prev := data));
List.iter trace_out ~f:(fun t ->
let data = Bits.to_bstr !(t.data) in
if not (String.equal data !(t.prev))
then (
write_var t.var data;
t.prev := data));
List.iter trace_internal ~f:(fun t ->
let data = Bits.to_bstr (Cyclesim.Node.to_bits t.data) in
if not (String.equal data !(t.prev))
then (
write_var t.var data;
t.prev := data));
write_time chan (!time + (vcdcycle / 2));
write_var clock "0";
time := !time + vcdcycle
in
Private.modify sim [ After, Reset, write_reset; Before, At_clock_edge, write_cycle ]
;;