1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
open! Core
include Incr_map_intf
let no_instrumentation = { Instrumentation.f = (fun f -> f ()) }
(** This type lets us capture the kind of map function being performed, so we can with
one implementation perform map and filter-map operations.
Here, ['input_data] is the type of data in the input map, ['output_data] is the type
of data in the output map, and ['f_output] is the return type of the [~f] function
passed to the mapping function. *)
module Map_type = struct
type ('input_data, 'output_data, 'f_output) t =
| Map : ('input_data, 'output_data, 'output_data) t
| Filter_map : ('input_data, 'output_data, 'output_data option) t
end
module Generic = struct
let with_old ~instrumentation i ~f =
let open Incremental.Let_syntax in
let old = ref None in
let%map a = i in
instrumentation.Instrumentation.f (fun () ->
let b = f ~old:!old a in
old := Some (a, b);
b)
;;
let cutoff ?(instrumentation = no_instrumentation) map ~cutoff =
let data_equal old_value new_value =
Incremental.Cutoff.should_cutoff cutoff ~old_value ~new_value
in
with_old ~instrumentation map ~f:(fun ~old cur ->
match old with
| None -> cur
| Some (_old_in, old) ->
Map.fold_symmetric_diff ~data_equal ~init:old old cur ~f:(fun acc (key, change) ->
match change with
| `Left _old -> Map.remove acc key
| `Right new_ -> Map.add_exn acc ~key ~data:new_
| `Unequal (_old, new_value) -> Map.set acc ~key ~data:new_value))
;;
let unordered_fold
~instrumentation
?(data_equal = phys_equal)
?update
?specialized_initial
?(finalize = Fn.id)
?(revert_to_init_when_empty = false)
map
~init
~add
~remove
=
let update =
let default ~key ~old_data ~new_data acc =
add ~key ~data:new_data (remove ~key ~data:old_data acc)
in
Option.value update ~default
in
with_old ~instrumentation map ~f:(fun ~old new_in ->
let acc =
match old with
| None ->
(match specialized_initial with
| None -> Map.fold ~init ~f:add new_in
| Some initial -> initial ~init new_in)
| Some (old_in, old_out) ->
if revert_to_init_when_empty && Map.length new_in = 0
then init
else
Map.fold_symmetric_diff
~init:old_out
old_in
new_in
~data_equal
~f:(fun acc (key, change) ->
match change with
| `Left old -> remove ~key ~data:old acc
| `Right new_ -> add ~key ~data:new_ acc
| `Unequal (old, new_) -> update ~key ~old_data:old ~new_data:new_ acc)
in
finalize acc)
;;
let unordered_fold_nested_maps
~instrumentation
?(data_equal = phys_equal)
?revert_to_init_when_empty
?update
incr_map
~init
~add
~remove
=
let update =
match update with
| Some update -> update
| None ->
fun ~outer_key ~inner_key ~old_data ~new_data acc ->
add
~outer_key
~inner_key
~data:new_data
(remove ~outer_key ~inner_key ~data:old_data acc)
in
unordered_fold
incr_map
~instrumentation
?revert_to_init_when_empty
~init
~update:(fun ~key:outer_key ~old_data:old_inner_map ~new_data:new_inner_map acc ->
(Map.fold_symmetric_diff old_inner_map new_inner_map ~data_equal)
~init:acc
~f:(fun acc (inner_key, diff) ->
match diff with
| `Left data_removed -> remove ~outer_key ~inner_key ~data:data_removed acc
| `Right data_added -> add ~outer_key ~inner_key ~data:data_added acc
| `Unequal (old_data, new_data) ->
update ~outer_key ~inner_key ~old_data ~new_data acc) [@nontail])
~add:(fun ~key:outer_key ~data:inner_map acc ->
Map.fold inner_map ~init:acc ~f:(fun ~key:inner_key ~data acc ->
add ~outer_key ~inner_key ~data acc))
~remove:(fun ~key:outer_key ~data:inner_map acc ->
Map.fold inner_map ~init:acc ~f:(fun ~key:inner_key ~data acc ->
remove ~outer_key ~inner_key ~data acc))
;;
let with_comparator' get_comparator x f =
Incremental.bind (Incremental.freeze (Incremental.map x ~f:get_comparator)) ~f
;;
(** Captures the comparator (which can't change anyway, since the type determines the
comparator) by freezing the corresponding map. Note that by first using Incremental.map to
get the comparator out of the map, we allow the initial map itself to be garbage
collected *)
let with_comparator map f = with_comparator' Map.comparator map f
let of_set ?(instrumentation = no_instrumentation) set =
with_comparator' Set.comparator set (fun comparator ->
let old_input = ref (Set.Using_comparator.empty ~comparator) in
let old_output = ref (Map.Using_comparator.empty ~comparator) in
Incremental.map set ~f:(fun new_input ->
instrumentation.Instrumentation.f (fun () ->
let new_output =
Sequence.fold
(Set.symmetric_diff !old_input new_input)
~init:!old_output
~f:(fun output -> function
| First k -> Map.remove output k
| Second k -> Map.add_exn output ~key:k ~data:())
in
old_input := new_input;
old_output := new_output;
new_output)))
;;
let generic_mapi
(type input_data output_data f_output state_witness)
(witness : (input_data, output_data, f_output) Map_type.t)
~instrumentation
?(data_equal = phys_equal)
(map : (('key, input_data, 'cmp) Map.t, state_witness) Incremental.t)
~(f : key:'key -> data:input_data -> f_output)
=
with_old ~instrumentation map ~f:(fun ~old input ->
match old, Map.length input with
| _, 0 | None, _ ->
(match witness with
| Map_type.Map -> (Map.mapi input ~f : ('key, output_data, 'cmp) Map.t)
| Map_type.Filter_map -> Map.filter_mapi input ~f)
| Some (old_input, old_output), _ ->
Map.fold_symmetric_diff
old_input
input
~data_equal
~init:old_output
~f:(fun output (key, change) ->
match change with
| `Left _ -> Map.remove output key
| `Right new_data | `Unequal (_, new_data) ->
let res = f ~key ~data:new_data in
(match witness with
| Map_type.Map -> Map.set output ~key ~data:res
| Map_type.Filter_map ->
(match res with
| None -> Map.remove output key
| Some output_data -> Map.set output ~key ~data:output_data))))
;;
let mapi ?(instrumentation = no_instrumentation) ?data_equal map ~f =
generic_mapi Map ~instrumentation ?data_equal map ~f
;;
let filter_mapi ?(instrumentation = no_instrumentation) ?data_equal map ~f =
generic_mapi Filter_map ~instrumentation ?data_equal map ~f
;;
let map ?instrumentation ?data_equal map ~f =
mapi ?instrumentation ?data_equal map ~f:(fun ~key:_ ~data -> f data)
;;
let filter_map ?instrumentation ?data_equal map ~f =
filter_mapi ?instrumentation ?data_equal map ~f:(fun ~key:_ ~data -> f data)
;;
let with_old2 ~instrumentation i1 i2 ~f =
let old = ref None in
Incremental.map2 i1 i2 ~f:(fun a1 a2 ->
instrumentation.Instrumentation.f (fun () ->
let b = f ~old:!old a1 a2 in
old := Some (a1, a2, b);
b))
;;
let
?(instrumentation = no_instrumentation)
?(data_equal = phys_equal)
?( = phys_equal)
?update
?specialized_initial
?(finalize = Fn.id)
?(revert_to_init_when_empty = false)
map
~init
~add
~remove
~
=
let update =
let default ~key ~old_data ~new_data acc =
add ~key ~data:new_data (remove ~key ~data:old_data acc extra) extra
in
Option.value update ~default
in
with_old2 ~instrumentation map extra ~f:(fun ~old new_in ->
let acc =
match old with
| None ->
(match specialized_initial with
| None ->
Map.fold new_in ~init ~f:(fun ~key ~data acc -> add ~key ~data acc new_extra)
| Some initial -> initial ~init new_in new_extra)
| Some (old_in, , old_out) ->
let acc =
if extra_equal old_extra new_extra
then old_out
else extra_changed ~old_extra ~new_extra ~input:old_in old_out
in
if revert_to_init_when_empty && Map.length new_in = 0
then init
else
Map.fold_symmetric_diff
~init:acc
old_in
new_in
~data_equal
~f:(fun acc (key, change) ->
match change with
| `Left old -> remove ~key ~data:old acc new_extra
| `Right new_ -> add ~key ~data:new_ acc new_extra
| `Unequal (old, new_) ->
update ~key ~old_data:old ~new_data:new_ acc new_extra)
in
finalize acc)
;;
let mapi_count
(type a cmp)
?(instrumentation = no_instrumentation)
?(data_equal = phys_equal)
input
~(comparator : (module Comparator.S with type t = a and type comparator_witness = cmp))
~f
=
let module M = (val comparator) in
let add new_key acc =
Map.update acc new_key ~f:(function
| None -> 1
| Some n -> n + 1)
in
let remove new_key acc =
Map.change acc new_key ~f:(function
| None -> None
| Some 1 -> None
| Some n -> Some (n - 1))
in
unordered_fold
~instrumentation
~data_equal
input
~init:(Map.empty (module M))
~add:(fun ~key ~data acc -> add (f ~key ~data) acc)
~remove:(fun ~key ~data acc -> remove (f ~key ~data) acc)
~update:(fun ~key ~old_data ~new_data acc ->
let prev_key = f ~key ~data:old_data in
let new_key = f ~key ~data:new_data in
if M.comparator.compare prev_key new_key = 0
then acc
else acc |> remove prev_key |> add new_key)
;;
let map_count ?instrumentation ?data_equal input ~comparator ~f =
mapi_count ?instrumentation ?data_equal input ~comparator ~f:(fun ~key:_ ~data ->
f data)
;;
let min_helper map =
match Map.min_elt map with
| None -> None
| Some (min, _) -> Some min
;;
let max_helper map =
match Map.max_elt map with
| None -> None
| Some (max, _) -> Some max
;;
let bounds_helper map =
match Map.min_elt map, Map.max_elt map with
| None, None -> None
| Some (min, _), Some (max, _) -> Some (min, max)
| _ -> assert false
;;
let mapi_min ?instrumentation ?data_equal input ~comparator ~f =
Incremental.map
~f:min_helper
(mapi_count ?instrumentation ?data_equal input ~comparator ~f)
;;
let mapi_max ?instrumentation ?data_equal input ~comparator ~f =
Incremental.map
~f:max_helper
(mapi_count ?instrumentation ?data_equal input ~comparator ~f)
;;
let mapi_bounds ?instrumentation ?data_equal input ~comparator ~f =
Incremental.map
~f:bounds_helper
(mapi_count ?instrumentation ?data_equal input ~comparator ~f)
;;
let map_min ?instrumentation ?data_equal input ~comparator ~f =
mapi_min ?instrumentation ?data_equal input ~comparator ~f:(fun ~key:_ ~data ->
f data)
;;
let map_max ?instrumentation ?data_equal input ~comparator ~f =
mapi_max ?instrumentation ?data_equal input ~comparator ~f:(fun ~key:_ ~data ->
f data)
;;
let min_value ?instrumentation ?data_equal input ~comparator =
map_min ?instrumentation ?data_equal input ~comparator ~f:Fn.id
;;
let max_value ?instrumentation ?data_equal input ~comparator =
map_max ?instrumentation ?data_equal input ~comparator ~f:Fn.id
;;
let map_bounds ?instrumentation ?data_equal input ~comparator ~f =
mapi_bounds ?instrumentation ?data_equal input ~comparator ~f:(fun ~key:_ ~data ->
f data)
;;
let value_bounds ?instrumentation ?data_equal input ~comparator =
map_bounds ?instrumentation ?data_equal input ~comparator ~f:Fn.id
;;
let merge_shared_impl
~old
~new_left_map
~new_right_map
~data_equal_left
~data_equal_right
~f
=
let comparator = Map.comparator new_left_map in
let old_left_map, old_right_map, old_output =
match old with
| None ->
let empty = Map.Using_comparator.empty ~comparator in
empty, empty, empty
| Some x -> x
in
let left_diff =
Map.symmetric_diff old_left_map new_left_map ~data_equal:data_equal_left
in
let right_diff =
Map.symmetric_diff old_right_map new_right_map ~data_equal:data_equal_right
in
Sequence.merge_with_duplicates
left_diff
right_diff
~compare:(fun (left_key, _) (right_key, _) -> comparator.compare left_key right_key)
|> Sequence.fold ~init:old_output ~f:(fun output diff_element ->
let key =
match diff_element with
| Left (key, _) | Right (key, _) -> key
| Both ((left_key, _), (_right_key, _)) ->
left_key
in
f ~old_output ~key ~output ~diff_element)
;;
let new_data_from_diff_element = function
| `Left _ -> None
| `Right x | `Unequal (_, x) -> Some x
;;
let merge
?(instrumentation = no_instrumentation)
?(data_equal_left = phys_equal)
?(data_equal_right = phys_equal)
left_map
right_map
~f
=
with_old2
left_map
right_map
~instrumentation
~f:(fun ~old new_left_map new_right_map ->
merge_shared_impl
~old
~new_left_map
~new_right_map
~data_equal_left
~data_equal_right
~f:(fun ~old_output:_ ~key ~output ~diff_element ->
let left_data_opt, right_data_opt =
match diff_element with
| Both ((_, left_diff), (_, right_diff)) ->
new_data_from_diff_element left_diff, new_data_from_diff_element right_diff
| Left (_, left_diff) ->
new_data_from_diff_element left_diff, Map.find new_right_map key
| Right (_, right_diff) ->
Map.find new_left_map key, new_data_from_diff_element right_diff
in
let output_data_opt =
match left_data_opt, right_data_opt with
| None, None -> None
| Some x, None -> f ~key (`Left x)
| None, Some y -> f ~key (`Right y)
| Some x, Some y -> f ~key (`Both (x, y))
in
match output_data_opt with
| None -> Map.remove output key
| Some data -> Map.set output ~key ~data))
;;
let merge_both_some
?(instrumentation = no_instrumentation)
?(data_equal_left = phys_equal)
?(data_equal_right = phys_equal)
?(out_equal = phys_equal)
left_map
right_map
~f
=
with_old2
left_map
right_map
~instrumentation
~f:(fun ~old new_left_map new_right_map ->
let comparator = Map.comparator new_left_map in
let empty = Map.Using_comparator.empty ~comparator in
match Map.length new_left_map, Map.length new_right_map with
| 0, _ | _, 0 -> empty
| _ ->
merge_shared_impl
~old
~new_left_map
~new_right_map
~data_equal_left
~data_equal_right
~f:(fun ~old_output ~key ~output ~diff_element ->
let left_and_right_data_opt =
let open Option.Let_syntax in
match diff_element with
| Both ((_, left_diff), (_, right_diff)) ->
let%bind left_data = new_data_from_diff_element left_diff in
let%map right_data = new_data_from_diff_element right_diff in
left_data, right_data
| Left (_, left_diff) ->
let%bind left_data = new_data_from_diff_element left_diff in
let%map right_data = Map.find new_right_map key in
left_data, right_data
| Right (_, right_diff) ->
let%bind right_data = new_data_from_diff_element right_diff in
let%map left_data = Map.find new_left_map key in
left_data, right_data
in
let prev_out = Map.find old_output key in
match left_and_right_data_opt with
| Some (x, y) ->
let data = f ~key x y in
(match prev_out with
| Some prev_out when out_equal data prev_out -> output
| None | Some _ -> Map.set output ~key ~data)
| None ->
(match prev_out with
| None -> output
| Some _ -> Map.remove output key)))
;;
let generic_mapi_with_comparator'
(type input_data output_data f_output state_witness)
(witness : (input_data, output_data, f_output) Map_type.t)
~instrumentation
?cutoff
?(data_equal = phys_equal)
(lhs : (('key, input_data, 'cmp) Map.t, state_witness) Incremental.t)
~(comparator : ('key, 'cmp) Comparator.t)
~(f :
key:'key
-> data:(input_data, state_witness) Incremental.t
-> (f_output, state_witness) Incremental.t)
: (('key, output_data, 'cmp) Map.t, state_witness) Incremental.t
=
let module E = Incremental.Expert in
let incremental_state = Incremental.state lhs in
let empty_map = Map.Using_comparator.empty ~comparator in
let prev_map = ref empty_map in
let prev_nodes = ref empty_map in
let acc : ('key, output_data, 'cmp) Map.t ref = ref empty_map in
let result = E.Node.create incremental_state (fun () -> !acc) in
let (on_inner_change : key:'key -> f_output -> unit) =
match witness with
| Map_type.Map -> fun ~key data -> acc := Map.set !acc ~key ~data
| Map_type.Filter_map ->
fun ~key opt ->
let old = !acc in
acc
:= (match opt with
| None -> Map.remove old key
| Some data -> Map.set old ~key ~data)
in
let rec lhs_change =
lazy
(Incremental.map lhs ~f:(fun map ->
instrumentation.Instrumentation.f (fun () ->
let new_nodes =
Map.fold_symmetric_diff
~data_equal
!prev_map
map
~init:!prev_nodes
~f:(fun nodes (key, changed) ->
match changed with
| `Unequal _ ->
let node, _dep = Map.find_exn nodes key in
E.Node.make_stale node;
nodes
| `Left _ ->
let node, dep = Map.find_exn nodes key in
let nodes = Map.remove nodes key in
E.Node.remove_dependency result dep;
acc := Map.remove !acc key;
E.Node.invalidate node;
nodes
| `Right _ ->
let node =
E.Node.create incremental_state (fun () ->
Map.find_exn !prev_map key)
in
Option.iter cutoff ~f:(fun c ->
Incremental.set_cutoff (E.Node.watch node) c);
E.Node.add_dependency node (E.Dependency.create (force lhs_change));
let user_function_dep =
E.Dependency.create
(f ~key ~data:(E.Node.watch node))
~on_change:(on_inner_change ~key)
in
E.Node.add_dependency result user_function_dep;
Map.set nodes ~key ~data:(node, user_function_dep))
in
prev_nodes := new_nodes;
prev_map := map)))
in
E.Node.add_dependency result (E.Dependency.create (force lhs_change));
E.Node.watch result
;;
let filter_mapi' ?(instrumentation = no_instrumentation) ?cutoff ?data_equal map ~f =
with_comparator map (fun comparator ->
generic_mapi_with_comparator'
Map_type.Filter_map
~instrumentation
?cutoff
?data_equal
map
~f
~comparator)
;;
let mapi' ?(instrumentation = no_instrumentation) ?cutoff ?data_equal map ~f =
with_comparator map (fun comparator ->
generic_mapi_with_comparator'
Map_type.Map
~instrumentation
?cutoff
?data_equal
map
~f
~comparator)
;;
let map' ?instrumentation ?cutoff ?data_equal map ~f =
mapi' ?instrumentation ?cutoff ?data_equal map ~f:(fun ~key:_ ~data -> f data)
;;
let filter_map' ?instrumentation ?cutoff ?data_equal map ~f =
filter_mapi' ?instrumentation ?cutoff ?data_equal map ~f:(fun ~key:_ ~data -> f data)
;;
let merge' ?instrumentation ?cutoff ?data_equal_left ?data_equal_right map1 map2 ~f =
merge
?instrumentation
?data_equal_left
?data_equal_right
map1
map2
~f:(fun ~key:_ diff -> Some diff)
|> filter_mapi' ?instrumentation ?cutoff ~f:(fun ~key ~data:diff -> f ~key diff)
;;
let unzip_mapi_with_comparator
(type v v1 v2 state_witness)
~instrumentation
?(data_equal : v -> v -> bool = phys_equal)
?(left_result_equal : v1 -> v1 -> bool = phys_equal)
?(right_result_equal : v2 -> v2 -> bool = phys_equal)
(input : (('key, v, 'cmp) Map.t, state_witness) Incremental.t)
~(comparator : ('key, 'cmp) Comparator.t)
~(f : key:'key -> data:v -> v1 * v2)
: (('key, v1, 'cmp) Map.t, state_witness) Incremental.t
* (('key, v2, 'cmp) Map.t, state_witness) Incremental.t
=
let module E = Incremental.Expert in
let incremental_state = Incremental.state input in
let empty_map = Map.Using_comparator.empty ~comparator in
let left_acc : ('key, v1, 'cmp) Map.t ref = ref empty_map in
let left_result = E.Node.create incremental_state (fun () -> !left_acc) in
let right_acc : ('key, v2, 'cmp) Map.t ref = ref empty_map in
let right_result = E.Node.create incremental_state (fun () -> !right_acc) in
let prev_map = ref empty_map in
let input_change =
Incremental.map input ~f:(fun map ->
instrumentation.Instrumentation.f (fun () ->
let left, right =
match Map.is_empty !prev_map, Map.is_empty map with
| true, true | false, true -> empty_map, empty_map
| true, false ->
let left =
Map.mapi map ~f:(fun ~key ~data ->
let l, _ = f ~key ~data in
l)
in
let right =
Map.mapi map ~f:(fun ~key ~data ->
let _, r = f ~key ~data in
r)
in
left, right
| false, false ->
Map.fold_symmetric_diff
~data_equal
!prev_map
map
~init:(!left_acc, !right_acc)
~f:(fun (left, right) (key, changed) ->
match changed with
| `Unequal (prev, new_) ->
let prev_a, prev_b = f ~key ~data:prev in
let new_a, new_b = f ~key ~data:new_ in
let left =
if left_result_equal prev_a new_a
then left
else Map.set left ~key ~data:new_a
in
let right =
if right_result_equal prev_b new_b
then right
else Map.set right ~key ~data:new_b
in
left, right
| `Left _ -> Map.remove left key, Map.remove right key
| `Right element ->
let a, b = f ~key ~data:element in
Map.set left ~key ~data:a, Map.set right ~key ~data:b)
in
if not (phys_equal !left_acc left) then E.Node.make_stale left_result;
if not (phys_equal !right_acc right) then E.Node.make_stale right_result;
left_acc := left;
right_acc := right;
prev_map := map))
in
E.Node.add_dependency left_result (E.Dependency.create input_change);
E.Node.add_dependency right_result (E.Dependency.create input_change);
E.Node.watch left_result, E.Node.watch right_result
;;
let unzip_mapi
?(instrumentation = no_instrumentation)
?data_equal
?left_result_equal
?right_result_equal
input
~f
=
let pair =
with_comparator input (fun comparator ->
input
|> unzip_mapi_with_comparator
~instrumentation
?data_equal
?left_result_equal
?right_result_equal
~comparator
~f
|> Tuple2.uncurry Incremental.both)
in
Incremental.map ~f:fst pair, Incremental.map ~f:snd pair
;;
let unzip ?instrumentation ?left_result_equal ?right_result_equal input =
let data_equal =
Option.map2 left_result_equal right_result_equal ~f:(fun l r ->
Tuple2.equal ~eq1:l ~eq2:r)
in
unzip_mapi
?instrumentation
?data_equal
?left_result_equal
?right_result_equal
input
~f:(fun ~key:_ ~data -> data)
;;
let unzip_mapi_with_comparator'
(type v v1 v2 state_witness)
~instrumentation
?cutoff
?(data_equal = phys_equal)
(input : (('key, v, 'cmp) Map.t, state_witness) Incremental.t)
~(comparator : ('key, 'cmp) Comparator.t)
~(f :
key:'key
-> data:(v, state_witness) Incremental.t
-> (v1, state_witness) Incremental.t * (v2, state_witness) Incremental.t)
: (('key, v1, 'cmp) Map.t, state_witness) Incremental.t
* (('key, v2, 'cmp) Map.t, state_witness) Incremental.t
=
let module E = Incremental.Expert in
let incremental_state = Incremental.state input in
let empty_map = Map.Using_comparator.empty ~comparator in
let prev_map = ref empty_map in
let prev_nodes = ref empty_map in
let left_acc : ('key, v1, 'cmp) Map.t ref = ref empty_map in
let left_result = E.Node.create incremental_state (fun () -> !left_acc) in
let right_acc : ('key, v2, 'cmp) Map.t ref = ref empty_map in
let right_result = E.Node.create incremental_state (fun () -> !right_acc) in
let left_on_inner_change ~key data = left_acc := Map.set !left_acc ~key ~data in
let right_on_inner_change ~key data = right_acc := Map.set !right_acc ~key ~data in
let rec input_change =
lazy
(Incremental.map input ~f:(fun map ->
instrumentation.Instrumentation.f (fun () ->
let new_nodes =
Map.fold_symmetric_diff
~data_equal
!prev_map
map
~init:!prev_nodes
~f:(fun nodes (key, changed) ->
match changed with
| `Unequal _ ->
let node, _left_dep, _right_dep = Map.find_exn nodes key in
E.Node.make_stale node;
nodes
| `Left _ ->
let node, left_dep, right_dep = Map.find_exn nodes key in
let nodes = Map.remove nodes key in
E.Node.remove_dependency left_result left_dep;
E.Node.remove_dependency right_result right_dep;
left_acc := Map.remove !left_acc key;
right_acc := Map.remove !right_acc key;
E.Node.invalidate node;
nodes
| `Right _ ->
let node =
E.Node.create incremental_state (fun () ->
Map.find_exn !prev_map key)
in
Option.iter cutoff ~f:(fun c ->
Incremental.set_cutoff (E.Node.watch node) c);
E.Node.add_dependency node (E.Dependency.create (force input_change));
let left_incr, right_incr = f ~key ~data:(E.Node.watch node) in
let left_user_function_dep =
E.Dependency.create left_incr ~on_change:(left_on_inner_change ~key)
in
let right_user_function_dep =
E.Dependency.create
right_incr
~on_change:(right_on_inner_change ~key)
in
E.Node.add_dependency left_result left_user_function_dep;
E.Node.add_dependency right_result right_user_function_dep;
Map.set
nodes
~key
~data:(node, left_user_function_dep, right_user_function_dep))
in
prev_nodes := new_nodes;
prev_map := map)))
in
E.Node.add_dependency left_result (E.Dependency.create (force input_change));
E.Node.add_dependency right_result (E.Dependency.create (force input_change));
E.Node.watch left_result, E.Node.watch right_result
;;
let unzip_mapi' ?(instrumentation = no_instrumentation) ?cutoff ?data_equal map ~f =
let pair =
with_comparator map (fun comparator ->
map
|> unzip_mapi_with_comparator' ~instrumentation ?cutoff ?data_equal ~comparator ~f
|> Tuple2.uncurry Incremental.both)
in
Incremental.map ~f:fst pair, Incremental.map ~f:snd pair
;;
let keys ?(instrumentation = no_instrumentation) map =
with_comparator map (fun comparator ->
let add ~key ~data:_ acc = Set.add acc key in
let remove ~key ~data:_ acc = Set.remove acc key in
let data_equal _ _ = true in
unordered_fold
map
~instrumentation
~init:(Set.Using_comparator.empty ~comparator)
~revert_to_init_when_empty:true
~data_equal
~add
~remove)
;;
let partition_mapi ?(instrumentation = no_instrumentation) ?data_equal map ~f =
with_comparator map (fun comparator ->
let empty = Map.Using_comparator.empty ~comparator in
unordered_fold
?data_equal
map
~instrumentation
~init:(empty, empty)
~revert_to_init_when_empty:true
~update:(fun ~key ~old_data:_ ~new_data:data (first, second) ->
match f ~key ~data with
| First data -> Map.set first ~key ~data, Map.remove second key
| Second data -> Map.remove first key, Map.set second ~key ~data)
~add:(fun ~key ~data (first, second) ->
match f ~key ~data with
| First data -> Map.add_exn first ~key ~data, second
| Second data -> first, Map.add_exn second ~key ~data)
~remove:(fun ~key ~data:_ (first, second) ->
Map.remove first key, Map.remove second key))
;;
let partition_mapi' ?instrumentation ?cutoff ?data_equal map ~f =
mapi' ?instrumentation ?cutoff ?data_equal map ~f
|> partition_mapi ?instrumentation ~f:(fun ~key:_ ~data -> data)
;;
let flatten state map =
let module E = Incremental.Expert in
let result = ref (Map.Using_comparator.empty ~comparator:(Map.comparator map)) in
let node = E.Node.create state (fun () -> !result) in
Map.iteri map ~f:(fun ~key ~data:incr ->
E.Node.add_dependency
node
(E.Dependency.create incr ~on_change:(fun a ->
result := Map.set !result ~key ~data:a)));
E.Node.watch node
;;
let join_with_comparator ~instrumentation map_incr ~comparator =
let module E = Incremental.Expert in
let incremental_state = Incremental.state map_incr in
let empty_map = Map.Using_comparator.empty ~comparator in
let result_map = ref empty_map in
let old_map_of_incrs = ref empty_map in
let current_dependencies = ref empty_map in
let result = E.Node.create incremental_state (fun () -> !result_map) in
let add_subnode current_dependencies ~key ~data_node =
let new_dep =
E.Dependency.create data_node ~on_change:(fun data ->
result_map := Map.set !result_map ~key ~data)
in
E.Node.add_dependency result new_dep;
Map.set current_dependencies ~key ~data:new_dep
in
let remove_subnode current_dependencies ~key =
let dep = Map.find_exn current_dependencies key in
E.Node.remove_dependency result dep;
result_map := Map.remove !result_map key;
Map.remove current_dependencies key
in
let lhs_change =
Incremental.map map_incr ~f:(fun map_of_incrs ->
instrumentation.Instrumentation.f (fun () ->
let new_dependency_map =
Map.fold_symmetric_diff
~data_equal:phys_equal
!old_map_of_incrs
map_of_incrs
~init:!current_dependencies
~f:(fun current_dependencies (key, diff) ->
match diff with
| `Left _ -> remove_subnode current_dependencies ~key
| `Right data_node -> add_subnode current_dependencies ~key ~data_node
| `Unequal (_, data_node) ->
remove_subnode current_dependencies ~key |> add_subnode ~key ~data_node)
in
current_dependencies := new_dependency_map;
old_map_of_incrs := map_of_incrs))
in
E.Node.add_dependency result (E.Dependency.create lhs_change);
E.Node.watch result
;;
let join ?(instrumentation = no_instrumentation) map =
with_comparator map (fun comparator ->
join_with_comparator ~instrumentation map ~comparator)
;;
module Separate_state = struct
type ('k, 'v, 'cmp, 'w) t =
{ mutable input_map : ('k, 'v, 'cmp) Map.t
; mutable expert_nodes : ('k, ('v, 'w) Incremental.Expert.Node.t, 'cmp) Map.t
; mutable output_map : ('k, ('v, 'w) Incremental.t, 'cmp) Map.t
}
let create comparator =
let empty = Map.Using_comparator.empty ~comparator in
{ input_map = empty; expert_nodes = empty; output_map = empty }
;;
let create_lookup_node state t key =
Incremental.Expert.Node.create state (fun () -> Map.find_exn t.input_map key)
;;
end
let separate ?(instrumentation = no_instrumentation) input_map ~data_equal =
let incremental_state = Incremental.state input_map in
with_comparator input_map (fun comparator ->
let state = Separate_state.create comparator in
let output_map_node =
Incremental.Expert.Node.create incremental_state (fun () -> state.output_map)
in
let make_node_depend_on_input_map_changed node ~input_map_changed =
let dependency =
Incremental.Expert.Dependency.create (Lazy.force_val input_map_changed)
in
Incremental.Expert.Node.add_dependency node dependency
in
let rec input_map_changed =
lazy
(Incremental.map input_map ~f:(fun input_map ->
instrumentation.Instrumentation.f (fun () ->
let prev_input_map = state.input_map in
let expert_nodes, output_map =
Map.fold_symmetric_diff
prev_input_map
input_map
~data_equal
~init:(state.expert_nodes, state.output_map)
~f:(fun (expert_nodes, output_map) (key, change) ->
match change with
| `Left _old_value ->
let old_node = Map.find_exn expert_nodes key in
Incremental.Expert.Node.invalidate old_node;
Incremental.Expert.Node.make_stale output_map_node;
Map.remove expert_nodes key, Map.remove output_map key
| `Right _new_value ->
let node =
Separate_state.create_lookup_node incremental_state state key
in
make_node_depend_on_input_map_changed node ~input_map_changed;
Incremental.Expert.Node.make_stale output_map_node;
( Map.add_exn expert_nodes ~key ~data:node
, Map.add_exn
output_map
~key
~data:(Incremental.Expert.Node.watch node) )
| `Unequal (_old_value, _new_value) ->
Incremental.Expert.Node.make_stale (Map.find_exn expert_nodes key);
expert_nodes, output_map)
in
state.input_map <- input_map;
state.expert_nodes <- expert_nodes;
state.output_map <- output_map)))
in
make_node_depend_on_input_map_changed output_map_node ~input_map_changed;
Incremental.Expert.Node.watch output_map_node)
;;
type 'a maybe_bound_structurally = 'a Maybe_bound.t =
| Incl of 'a
| Excl of 'a
| Unbounded
[@@deriving equal]
let subrange
(type k v cmp state_witness)
?(instrumentation = no_instrumentation)
?(data_equal = phys_equal)
(map_incr : ((k, v, cmp) Map.t, state_witness) Incremental.t)
range
=
with_old2 ~instrumentation map_incr range ~f:(fun ~old map range ->
let compare = (Map.comparator map).compare in
let equal l r = compare l r = 0 in
let ( > ) a b = compare a b > 0
and ( >= ) a b = compare a b >= 0 in
let maybe_bound_equal a b : bool = equal_maybe_bound_structurally equal a b in
let range_is_empty ~min ~max : bool =
match min, max with
| Unbounded, (Unbounded | Excl _ | Incl _) | (Excl _ | Incl _), Unbounded -> false
| Incl min, Incl max -> min > max
| Excl min, Excl max | Incl min, Excl max | Excl min, Incl max -> min >= max
in
let range_includes ~min ~max key : bool =
Maybe_bound.is_lower_bound min ~of_:key ~compare
&& Maybe_bound.is_upper_bound max ~of_:key ~compare
in
match range with
| None ->
Map.Using_comparator.empty ~comparator:(Map.comparator map)
| Some ((min, max) as range) ->
let from_scratch () = Map.subrange map ~lower_bound:min ~upper_bound:max in
(match old with
| None | Some (_, None, _) ->
from_scratch ()
| Some (_, Some (old_min, old_max), _)
when range_is_empty ~min:old_min ~max:old_max
|| range_is_empty ~min ~max:old_max
|| range_is_empty ~min:old_min ~max ->
from_scratch ()
| Some (old_map, Some ((old_min, old_max) as old_range), old_res) ->
with_return (fun { return } ->
let in_range_intersection key =
range_includes ~min ~max key
&& range_includes ~min:old_min ~max:old_max key
in
let apply_diff_in_intersection (outside, map) (key, data) =
if in_range_intersection key
then (
match data with
| `Left _ -> outside, Map.remove map key
| `Right data | `Unequal (_, data) -> outside, Map.set map ~key ~data)
else (
let outside = outside - 1 in
if Int.O.(outside < 0)
then return (from_scratch ())
else outside, Map.remove map key)
in
let with_updated_values_in_intersection =
let outside_cutoff = Map.length old_res / 4 in
Map.fold_symmetric_diff
~data_equal
old_map
map
~init:(outside_cutoff, old_res)
~f:apply_diff_in_intersection
|> snd
in
if Tuple2.equal ~eq1:maybe_bound_equal ~eq2:maybe_bound_equal old_range range
then
with_updated_values_in_intersection
else (
let without_keys_out_of_range =
Map.subrange
with_updated_values_in_intersection
~lower_bound:min
~upper_bound:max
in
let with_new_keys_now_in_range =
let map_append_exn lower_part upper_part =
match Map.append ~lower_part ~upper_part with
| `Ok map -> map
| `Overlapping_key_ranges ->
failwith "impossible case: BUG in incr_map.ml subrange"
in
let lower_part =
match old_min with
| Unbounded ->
Map.Using_comparator.empty ~comparator:(Map.comparator map)
| Excl old_min ->
Map.subrange map ~lower_bound:min ~upper_bound:(Incl old_min)
| Incl old_min ->
Map.subrange map ~lower_bound:min ~upper_bound:(Excl old_min)
and upper_part =
match old_max with
| Unbounded ->
Map.Using_comparator.empty ~comparator:(Map.comparator map)
| Excl old_max ->
Map.subrange map ~lower_bound:(Incl old_max) ~upper_bound:max
| Incl old_max ->
Map.subrange map ~lower_bound:(Excl old_max) ~upper_bound:max
in
map_append_exn
lower_part
(map_append_exn without_keys_out_of_range upper_part)
in
with_new_keys_now_in_range))))
;;
let rekey
?(instrumentation = no_instrumentation)
?data_equal
map_incr
~comparator:outer_comparator
~f
=
unordered_fold
map_incr
?data_equal
~instrumentation
~init:(Map.empty outer_comparator, [])
~revert_to_init_when_empty:true
~add:(fun ~key ~data (output, adds) ->
let new_entry = f ~key ~data, data in
output, new_entry :: adds)
~remove:(fun ~key ~data (output, adds) -> Map.remove output (f ~key ~data), adds)
~update:(fun ~key ~old_data ~new_data (output, adds) ->
let prev_key = f ~key ~data:old_data in
let new_key = f ~key ~data:new_data in
if (Map.comparator output).compare prev_key new_key = 0
then Map.set output ~key:new_key ~data:new_data, adds
else (
let output = Map.remove output prev_key in
output, (new_key, new_data) :: adds))
~finalize:(fun (output, adds) ->
let output =
List.fold adds ~init:output ~f:(fun output (key, data) ->
Map.add_exn output ~key ~data)
in
output, [])
|> Incremental.map ~f:fst
;;
let index_byi
?(instrumentation = no_instrumentation)
?data_equal
map_incr
~comparator:outer_comparator
~index
=
with_comparator map_incr (fun inner_comparator ->
unordered_fold
?data_equal
~instrumentation
map_incr
~init:(Map.empty outer_comparator)
~revert_to_init_when_empty:true
~add:(fun ~key:inner_key ~data outer_map ->
match index ~key:inner_key ~data with
| None -> outer_map
| Some outer_key ->
Map.update outer_map outer_key ~f:(function
| None ->
Map.Using_comparator.singleton inner_key data ~comparator:inner_comparator
| Some inner_map -> Map.add_exn inner_map ~key:inner_key ~data))
~remove:(fun ~key:inner_key ~data outer_map ->
match index ~key:inner_key ~data with
| None -> outer_map
| Some outer_key ->
Map.change outer_map outer_key ~f:(function
| None ->
failwith "BUG: Hit supposedly impossible case in Incr_map.index_by"
| Some inner_map ->
let inner_map = Map.remove inner_map inner_key in
if Map.is_empty inner_map then None else Some inner_map)))
;;
let index_by ?instrumentation ?data_equal map_incr ~comparator ~index =
index_byi
?instrumentation
?data_equal
map_incr
~comparator
~index:(fun ~key:_ ~data -> index data)
;;
(** Find two keys in map by index, O(n). We use just one fold (two Map.nth would use two)
and optimize for keys close to either beginning or end by using either fold or
fold_right.
*)
module Key_status = struct
type 'k t =
| Known of 'k
| Known_none
| Unknown
let is_known = function
| Unknown -> false
| _ -> true
;;
let to_option = function
| Unknown | Known_none -> None
| Known k -> Some k
;;
end
let find_key_range_linear (type k) ~from ~to_ (map : (k, _, _) Map.t)
: (k * k option) option
=
let open Key_status in
let len = Map.length map in
let begin_key = if Int.( >= ) from len then Known_none else Unknown in
let end_key = if Int.( >= ) to_ len then Known_none else Unknown in
let find_keys fold ~start_pos ~advance_pos =
with_return (fun { return } ->
fold
map
~init:(begin_key, end_key, start_pos)
~f:(fun ~key ~data:_ (begin_key, end_key, pos) ->
let begin_key = if Int.( = ) pos from then Known key else begin_key in
let end_key = if Int.( = ) pos to_ then Known key else end_key in
if is_known begin_key && is_known end_key
then return (begin_key, end_key, pos)
else begin_key, end_key, advance_pos pos))
in
let begin_key, end_key, _ =
if to_ < len - from
then find_keys Map.fold ~start_pos:0 ~advance_pos:(fun pos -> pos + 1)
else find_keys Map.fold_right ~start_pos:(len - 1) ~advance_pos:(fun pos -> pos - 1)
in
Option.map (Key_status.to_option begin_key) ~f:(fun begin_key ->
begin_key, Key_status.to_option end_key)
;;
let nth_from_either_side (type k) n (map : (k, _, _) Map.t) : k option =
Option.map ~f:fst (find_key_range_linear ~from:n ~to_:n map)
;;
(** Find key [by] positions earlier/later in a map. Returns none if out of bounds. *)
let rec offset (key : 'k) (map : ('k, _, _) Map.t) ~by : 'k option =
if Int.( = ) by 0
then Some key
else (
let closest_dir, add =
if Int.( < ) by 0 then `Less_than, 1 else `Greater_than, -1
in
match Map.closest_key map closest_dir key with
| None -> None
| Some (key, _) -> offset key map ~by:(by + add))
;;
(** Find how we need to move [key] if [changed_key] changed in the given
way *)
let find_offset ~compare ~key ~changed_key change =
if Int.( < ) (compare changed_key key) 0
then (
match change with
| `Left _ -> 1
| `Right _ -> -1
| _ -> 0)
else 0
;;
let rank
(type k v cmp state_witness)
?(instrumentation = no_instrumentation)
(map : ((k, v, cmp) Map.t, state_witness) Incremental.t)
(key : (k, state_witness) Incremental.t)
=
with_comparator map (fun comparator ->
let compare_key = comparator.compare in
let same_key a b = compare_key a b = 0 in
let when_key_changed ~map ~old_key ~new_key ~old_rank =
if compare_key new_key old_key < 0
then (
let lower_bound, upper_bound = Excl new_key, Excl old_key in
let subrange = Map.subrange map ~lower_bound ~upper_bound in
old_rank - Map.length subrange - 1)
else (
let lower_bound, upper_bound = Excl old_key, Excl new_key in
let subrange = Map.subrange map ~lower_bound ~upper_bound in
old_rank + Map.length subrange + 1)
in
let when_map_changed ~old_map ~new_map ~key ~old_rank =
Map.fold_symmetric_diff
~data_equal:(fun _ _ -> true)
old_map
new_map
~init:old_rank
~f:(fun acc (diff_key, diff) ->
match diff with
| `Left _ when compare_key diff_key key < 0 -> acc - 1
| `Right _ when compare_key diff_key key < 0 -> acc + 1
| _ -> acc)
in
let rec process ~(old : ((k, v, _) Map.t * _ * _) option) new_map (new_key : k) =
if not (Map.mem new_map new_key)
then None
else (
match old with
| Some (old_map, old_key, old_rank)
when phys_equal new_map old_map && same_key old_key new_key -> old_rank
| Some (old_map, old_key, Some old_rank) when phys_equal new_map old_map ->
Some (when_key_changed ~map:new_map ~old_key ~new_key ~old_rank)
| Some (old_map, old_key, Some old_rank) when same_key new_key old_key ->
Some (when_map_changed ~old_map ~new_map ~key:new_key ~old_rank)
| Some (old_map, old_key, Some old_rank) ->
let old_rank =
process ~old:(Some (old_map, old_key, Some old_rank)) new_map old_key
in
process ~old:(Some (new_map, old_key, old_rank)) new_map new_key
| Some (_, _, None) | None -> Map.rank new_map new_key)
in
with_old2 ~instrumentation map key ~f:process)
;;
(** Range map by indices *)
let subrange_by_rank
(type k state_witness)
?(instrumentation = no_instrumentation)
?data_equal
(map : ((k, _, _) Map.t, state_witness) Incremental.t)
(range : (int Maybe_bound.t * int Maybe_bound.t, state_witness) Incremental.t)
=
let find_key_range (range : (int * int, state_witness) Incremental.t)
: ((k * k option) option, state_witness) Incremental.t
=
with_old2 map range ~instrumentation ~f:(fun ~old map (from, to_) ->
if Int.( < ) to_ from || Int.( < ) from 0
then raise_s [%message "Invalid indices" (from : int) (to_ : int)];
match old with
| Some (old_map, (old_from, old_to), Some (begin_key, end_key_opt)) ->
let find_offset = find_offset ~compare:(Map.comparator map).compare in
let range_offset_begin = from - old_from in
let range_offset_end = to_ - old_to in
let adjust_and_offset ~by key =
let by = by + if by >= 0 && not (Map.mem map key) then 1 else 0 in
offset key map ~by
in
let diff ~init ~f =
Map.fold_symmetric_diff ~data_equal:(fun _ _ -> true) old_map map ~init ~f
in
let begin_key_opt, end_key_opt =
match end_key_opt with
| Some end_key ->
let map_offset_begin, map_offset_end =
diff ~init:(0, 0) ~f:(fun (offset_begin, offset_end) (key, change) ->
( offset_begin + find_offset ~key:begin_key ~changed_key:key change
, offset_end + find_offset ~key:end_key ~changed_key:key change ))
in
( adjust_and_offset begin_key ~by:(map_offset_begin + range_offset_begin)
, adjust_and_offset end_key ~by:(map_offset_end + range_offset_end) )
| None ->
let map_offset_begin =
diff ~init:0 ~f:(fun offset_begin (key, change) ->
offset_begin + find_offset ~key:begin_key ~changed_key:key change)
in
( adjust_and_offset begin_key ~by:(map_offset_begin + range_offset_begin)
, nth_from_either_side to_ map )
in
assert (Option.for_all ~f:(Map.mem map) begin_key_opt);
assert (Option.for_all ~f:(Map.mem map) end_key_opt);
Option.map begin_key_opt ~f:(fun begin_key -> begin_key, end_key_opt)
| None | Some (_, _, None) ->
find_key_range_linear map ~from ~to_)
in
let open Incremental.Let_syntax in
let ( >>> ) new_ bound = Maybe_bound.map ~f:(fun _ -> new_) bound in
let return = Incremental.return (Incremental.state map) in
let key_range =
match%pattern_bind range with
| Maybe_bound.Unbounded, Maybe_bound.Unbounded ->
return (Some (Maybe_bound.Unbounded, Maybe_bound.Unbounded))
| ( ((Maybe_bound.Incl l | Maybe_bound.Excl l) as lb)
, ((Maybe_bound.Incl u | Maybe_bound.Excl u) as ub) ) ->
let%map key_range = find_key_range (Incremental.both l u)
and lb = lb
and ub = ub in
(match key_range with
| Some (begin_key, Some end_key) -> Some (begin_key >>> lb, end_key >>> ub)
| Some (begin_key, None) -> Some (begin_key >>> lb, Unbounded)
| None -> None)
| ((Maybe_bound.Incl l | Maybe_bound.Excl l) as lb), Maybe_bound.Unbounded ->
let%map key_range = find_key_range (Incremental.both l l)
and lb = lb in
(match key_range with
| Some (key, _) -> Some (key >>> lb, Unbounded)
| None -> None)
| Maybe_bound.Unbounded, ((Maybe_bound.Incl u | Maybe_bound.Excl u) as ub) ->
let%map key_range = find_key_range (Incremental.both u u)
and ub = ub in
(match key_range with
| Some (key, _) -> Some (Unbounded, key >>> ub)
| None -> Some (Unbounded, Unbounded))
in
subrange ?data_equal map key_range
;;
let transpose
: type k1 k2 v k1_cmp k2_cmp state_witness.
?instrumentation:Instrumentation.t
-> ?data_equal:(v -> v -> bool)
-> (k2, k2_cmp) Comparator.Module.t
-> ((k1, (k2, v, k2_cmp) Map.t, k1_cmp) Map.t, state_witness) Incremental.t
-> ((k2, (k1, v, k1_cmp) Map.t, k2_cmp) Map.t, state_witness) Incremental.t
=
fun ?(instrumentation = no_instrumentation) ?(data_equal = phys_equal) k2_comparator m ->
with_comparator m (fun k1_comparator ->
let update
: key:k1 -> old_data:(k2, v, k2_cmp) Map.t -> new_data:(k2, v, k2_cmp) Map.t
-> (k2, (k1, v, k1_cmp) Map.t, k2_cmp) Map.t
-> (k2, (k1, v, k1_cmp) Map.t, k2_cmp) Map.t
=
fun ~key:k1 ~old_data ~new_data acc ->
Map.fold_symmetric_diff
old_data
new_data
~data_equal
~init:acc
~f:(fun acc (k2, diff) ->
let value =
match diff with
| `Left _ -> None
| `Right x | `Unequal (_, x) -> Some x
in
Map.change acc k2 ~f:(fun acc_inner ->
let acc_inner =
Map.change
(Option.value
acc_inner
~default:(Map.Using_comparator.empty ~comparator:k1_comparator))
k1
~f:(fun _ -> value)
in
if Map.is_empty acc_inner then None else Some acc_inner))
in
let add ~key ~data =
update ~key ~old_data:(Map.empty k2_comparator) ~new_data:data
in
let remove ~key ~data =
update ~key ~old_data:data ~new_data:(Map.empty k2_comparator)
in
unordered_fold
m
~instrumentation
~init:(Map.empty k2_comparator)
~revert_to_init_when_empty:true
~update
~add
~remove)
;;
let collapse_by
(type outer_key outer_cmp inner_key inner_cmp combined_key combined_cmp)
?(instrumentation = no_instrumentation)
?data_equal
(map_incr :
((outer_key, (inner_key, _, inner_cmp) Map.t, outer_cmp) Map.t, _) Incremental.t)
~(merge_keys : outer_key -> inner_key -> combined_key)
~(comparator : (combined_key, combined_cmp) Comparator.Module.t)
=
unordered_fold_nested_maps
~instrumentation
?data_equal
map_incr
~init:(Map.empty comparator)
~revert_to_init_when_empty:true
~update:(fun ~outer_key ~inner_key ~old_data:_ ~new_data acc ->
Map.set acc ~key:(merge_keys outer_key inner_key) ~data:new_data)
~add:(fun ~outer_key ~inner_key ~data acc ->
Map.add_exn acc ~key:(merge_keys outer_key inner_key) ~data)
~remove:(fun ~outer_key ~inner_key ~data:_ acc ->
Map.remove acc (merge_keys outer_key inner_key))
;;
let collapse
(type outer_key outer_cmp inner_key inner_cmp)
?instrumentation
?data_equal
(map_incr :
((outer_key, (inner_key, _, inner_cmp) Map.t, outer_cmp) Map.t, _) Incremental.t)
~comparator:(inner_comparator : (inner_key, inner_cmp) Comparator.Module.t)
=
with_comparator map_incr (fun outer_comparator ->
let module Cmp = struct
type t = outer_key * inner_key
type comparator_witness = (outer_cmp, inner_cmp) Tuple2.comparator_witness
let comparator =
let inner_comparator =
let module M = (val inner_comparator) in
M.comparator
in
Tuple2.comparator outer_comparator inner_comparator
;;
end
in
collapse_by
?instrumentation
?data_equal
map_incr
~merge_keys:Tuple2.create
~comparator:(module Cmp))
;;
let expand
?(instrumentation = no_instrumentation)
?data_equal
map_incr
~outer_comparator
~inner_comparator
=
unordered_fold
~instrumentation
?data_equal
map_incr
~init:(Map.empty outer_comparator)
~revert_to_init_when_empty:true
~update:(fun ~key:(outer_key, inner_key) ~old_data:_ ~new_data acc ->
Map.update acc outer_key ~f:(function
| None -> Map.singleton inner_comparator inner_key new_data
| Some map -> Map.set map ~key:inner_key ~data:new_data))
~add:(fun ~key:(outer_key, inner_key) ~data acc ->
Map.update acc outer_key ~f:(function
| None -> Map.singleton inner_comparator inner_key data
| Some map -> Map.add_exn map ~key:inner_key ~data))
~remove:(fun ~key:(outer_key, inner_key) ~data:_ acc ->
Map.change acc outer_key ~f:(function
| None -> None
| Some map ->
let map = Map.remove map inner_key in
Option.some_if (not (Map.is_empty map)) map))
;;
let counti ?(instrumentation = no_instrumentation) ?data_equal map_incr ~f =
unordered_fold
~instrumentation
?data_equal
map_incr
~init:0
~revert_to_init_when_empty:true
~add:(fun ~key ~data count -> if f ~key ~data then count + 1 else count)
~remove:(fun ~key ~data count -> if f ~key ~data then count - 1 else count)
;;
let count ?instrumentation ?data_equal map_incr ~f =
counti ?instrumentation ?data_equal map_incr ~f:(fun ~key:_ ~data -> f data)
;;
let existsi ?instrumentation ?data_equal map_incr ~f =
Incremental.map (counti ?instrumentation ?data_equal map_incr ~f) ~f:(fun count ->
count <> 0)
;;
let exists ?instrumentation ?data_equal map_incr ~f =
existsi ?instrumentation ?data_equal map_incr ~f:(fun ~key:_ ~data -> f data)
;;
let sum
(type u)
?(instrumentation = no_instrumentation)
?data_equal
(map_incr : ((_, _, _) Map.t, _) Incremental.t)
(module Group : Abstract_algebra.Commutative_group.Without_sexp with type t = u)
~f
=
unordered_fold
~instrumentation
?data_equal
map_incr
~init:Group.zero
~revert_to_init_when_empty:true
~add:(fun ~key:_ ~data:v acc -> Group.( + ) acc (f v))
~remove:(fun ~key:_ ~data:v acc -> Group.( - ) acc (f v))
;;
let for_alli ?instrumentation ?data_equal map_incr ~f =
Incremental.map
(counti ?instrumentation ?data_equal map_incr ~f:(fun ~key ~data ->
not (f ~key ~data)))
~f:(fun count -> count = 0)
;;
let for_all ?instrumentation ?data_equal map_incr ~f =
for_alli ?instrumentation ?data_equal map_incr ~f:(fun ~key:_ ~data -> f data)
;;
let unordered_fold
?(instrumentation = no_instrumentation)
?data_equal
?update
?specialized_initial
?finalize
?revert_to_init_when_empty
map
~init
~add
~remove
=
unordered_fold
~instrumentation
?data_equal
?update
?specialized_initial
?finalize
?revert_to_init_when_empty
map
~init
~add
~remove
;;
let unordered_fold_nested_maps
?(instrumentation = no_instrumentation)
?data_equal
?revert_to_init_when_empty
?update
map
~init
~add
~remove
=
unordered_fold_nested_maps
~instrumentation
?data_equal
?revert_to_init_when_empty
?update
map
~init
~add
~remove
;;
module For_testing = struct
let find_key_range_linear = find_key_range_linear
end
module Lookup = struct
type ('v, 'w) entry =
{ mutable saved_value : 'v option
; node : ('v option, 'w) Incremental.Expert.Node.t
}
type ('k, 'v, 'cmp, 'w) t =
{ mutable saved_map : ('k, 'v, 'cmp) Map.t
; mutable lookup_entries : ('k, ('v, 'w) entry list, 'cmp) Map.t
; updater_node : (unit, 'w) Incremental.t
; scope : 'w Incremental.Scope.t
}
module M (K : sig
type t
type comparator_witness
end) =
struct
type nonrec ('v, 'w) t = (K.t, 'v, K.comparator_witness, 'w) t
end
let create
?(instrumentation = no_instrumentation)
?(data_equal = phys_equal)
input_map
~comparator
=
let rec self =
lazy
(let updater_node =
Incremental.map input_map ~f:(fun input_map ->
instrumentation.Instrumentation.f (fun () ->
let (lazy self) = self in
Map.fold_symmetric_diff
self.saved_map
input_map
~data_equal
~init:()
~f:(fun () (key, changed_value) ->
let entries = Map.find_multi self.lookup_entries key in
List.iter entries ~f:(fun entry ->
entry.saved_value
<- (match changed_value with
| `Left _ -> None
| `Right new_value | `Unequal (_, new_value) -> Some new_value);
Incremental.Expert.Node.make_stale entry.node));
self.saved_map <- input_map))
in
let empty_map = Map.Using_comparator.empty ~comparator in
{ saved_map = empty_map
; lookup_entries = empty_map
; updater_node
; scope = Incremental.Scope.current (Incremental.state input_map) ()
})
in
Lazy.force self
;;
let[@cold] slow_path_link_entry t entry ~key ~is_now_observable =
let (lazy entry) = entry in
let current_entries = Map.find_multi t.lookup_entries key in
let is_linked = List.exists current_entries ~f:(phys_equal entry) in
if Bool.equal is_linked is_now_observable
then ()
else if is_now_observable
then
t.lookup_entries
<- Map.update t.lookup_entries key ~f:(function
| Some (other_entry :: _ as other_entries) ->
entry.saved_value <- other_entry.saved_value;
entry :: other_entries
| None | Some [] ->
entry.saved_value <- Map.find t.saved_map key;
[ entry ])
else (
let new_entries =
List.filter current_entries ~f:(fun x -> not (phys_equal entry x))
in
t.lookup_entries
<- (if List.is_empty new_entries
then Map.remove t.lookup_entries key
else Map.set t.lookup_entries ~key ~data:new_entries))
;;
let[@cold] slow_path_create_node t key =
let incremental_state = Incremental.state t.updater_node in
Incremental.Scope.within incremental_state t.scope ~f:(fun () ->
let rec entry =
lazy
{ saved_value = Map.find t.saved_map key
; node =
Incremental.Expert.Node.create
incremental_state
(fun () -> (force entry).saved_value)
~on_observability_change:(slow_path_link_entry t entry ~key)
}
in
let (lazy entry) = entry in
Incremental.Expert.Node.add_dependency
entry.node
(Incremental.Expert.Dependency.create t.updater_node);
Incremental.Expert.Node.watch entry.node)
;;
let find t key =
match Map.find_multi t.lookup_entries key with
| entry :: _ -> Incremental.Expert.Node.watch entry.node
| [] -> slow_path_create_node t key
;;
module For_debug = struct
let[@cold] sexp_of_entry sexp_of_value entry =
let { saved_value; node } = entry in
let node = Incremental.Expert.Node.watch node in
[%sexp
{ saved_value : value option
; node_info = (Incremental.user_info node : (Info.t option[@sexp.option]))
; node_is_const =
(Option.some_if (Incremental.is_const node) ()
: (unit option[@sexp.option]))
; node_is_invalid =
(Option.some_if (not (Incremental.is_valid node)) ()
: (unit option[@sexp.option]))
; node_is_unnecessary =
(Option.some_if (not (Incremental.is_necessary node)) ()
: (unit option[@sexp.option]))
}]
;;
let[@cold] sexp_of_t sexp_of_key sexp_of_value t =
let info_per_key =
Map.merge t.saved_map t.lookup_entries ~f:(fun ~key data ->
let actual_value, entries =
match data with
| `Left x -> Some x, []
| `Right y -> None, y
| `Both (x, y) -> Some x, y
in
Some
[%sexp
{ key : key
; actual_value : (value option[@sexp.option])
; entries : value entry list
}])
in
Sexp.List (Map.data info_per_key)
;;
end
end
end
module type S = sig
type state_witness
include
S_gen
with type 'a Incr.t = ('a, state_witness) Incremental.t
and type 'a Incr.Cutoff.t = 'a Incremental.Cutoff.t
and type ('k, 'v, 'cmp) Lookup.t = ('k, 'v, 'cmp, state_witness) Generic.Lookup.t
end
module Make (Incr : Incremental.S) = struct
include Generic
module Instrumentation = Instrumentation
let flatten x = flatten Incr.State.t x
module Lookup = struct
include Lookup
type ('k, 'v, 'cmp) t = ('k, 'v, 'cmp, Incr.state_witness) Lookup.t
module M (K : sig
type t
type comparator_witness
end) : sig
type nonrec 'v t = (K.t, 'v, K.comparator_witness) t
end = struct
type nonrec 'v t = (K.t, 'v, K.comparator_witness) t
end
end
end
include Generic