Source file typing.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
(*****************************************************************************

  Liquidsoap, a programmable stream generator.
  Copyright 2003-2024 Savonet team

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details, fully stated in the COPYING
  file at the root of the liquidsoap distribution.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301  USA

 *****************************************************************************)

(** Typing. *)

open Type

let () = Type.debug := false
let () = Type.debug_levels := false
let () = Type.debug_variance := false
let () = Repr.global_evar_names := false
let debug_subtyping = ref false

(** Allow functions to forget arguments during subtyping. This would not be a
    good idea if we had de Bruijn indices for instance. *)
let forget_arguments = true

type env = (string * scheme) list

(** {1 Type generalization and instantiation}

    We don't have type schemes per se, but we compute generalizable variables
    and keep track of them in the AST. This is simple and useful because in any
    case we need to distinguish two 'a variables bound at different places.
    Indeed, we might instantiate one in a term where the second is bound, and we
    don't want to merge the two when going under the binder.

    When generalizing we need to know what can be generalized in the outermost
    type but also in the inner types of the term forming a let-definition.
    Indeed those variables will have to be instantiated by fresh ones for every
    instance.

    If the value restriction applies, then we have some (fun (...) -> ...) and
    any type variable of higher level can be generalized, whether it's in the
    outermost type or not. *)

(** Find all the free variables satisfying a predicate. *)
let filter_vars f t =
  let rec aux l t =
    let t = deref t in
    match t.descr with
      | Int | Float | String | Bool | Never -> l
      | Custom c -> c.filter_vars aux l c.typ
      | Getter t -> aux l t
      | List { t } | Nullable t -> aux l t
      | Tuple aa -> List.fold_left aux l aa
      | Meth ({ scheme = g, t }, u) ->
          let l = List.filter (fun v -> not (List.mem v g)) (aux l t) in
          aux l u
      | Constr c -> List.fold_left (fun l (_, t) -> aux l t) l c.params
      | Arrow (p, t) -> aux (List.fold_left (fun l (_, _, t) -> aux l t) l p) t
      | Var { contents = Free var } ->
          if f var && not (List.exists (Var.eq var) l) then var :: l else l
      | Var { contents = Link _ } -> assert false
  in
  aux [] t

(** Return a list of generalizable variables in a type. This is performed after
    type inference on the left-hand side of a let-in, with [level] being the
    level of that let-in. Uses the simple method of ML, to be associated with a
    value restriction. *)
let generalizable ~level t = filter_vars (fun v -> v.level > level) t

let generalize ~level t : scheme = (generalizable ~level t, t)

(** Instantiate a type scheme, given as a type together with a list of
    generalized variables. This erases position information, since they usually
    become irrelevant. *)
let instantiate ~level ((generalized, t) : scheme) =
  if generalized = [] then t
  else (
    let mapper =
      Type.Fresh.init ~selector:(fun v -> List.memq v generalized) ~level ()
    in
    Type.Fresh.make mapper t)

(** {1 Assignation} *)

(** This exception can be raised when attempting to assign a variable. *)
exception Occur_check of var * t

(** Check that [a] (a dereferenced type variable) does not occur in [b] and
    prepare the instantiation [a<-b] by adjusting the levels. *)
let occur_check (a : var) =
  let rec occur_check = function
    | { descr = Int }
    | { descr = Float }
    | { descr = String }
    | { descr = Bool }
    | { descr = Never } ->
        ()
    | { descr = Constr c } -> List.iter (fun (_, x) -> occur_check x) c.params
    | { descr = Tuple l } -> List.iter occur_check l
    | { descr = Getter t } -> occur_check t
    | { descr = List { t } } -> occur_check t
    | { descr = Nullable t } -> occur_check t
    | { descr = Meth ({ scheme = g, t }, u) } ->
        (* We assume that a is not a generalized variable of t. *)
        (* TODO: we should not lower the level of bound variables, but this
           complicates the code and has little effect. *)
        assert (not (List.exists (Var.eq a) g));
        occur_check t;
        occur_check u
    | { descr = Arrow (p, t) } ->
        List.iter (fun (_, _, t) -> occur_check t) p;
        occur_check t
    | { descr = Custom c } -> c.occur_check occur_check c.typ
    | { descr = Var { contents = Free x } } as b ->
        if Type.Var.eq a x then raise (Occur_check (a, b));
        x.level <- min a.level x.level
    | { descr = Var { contents = Link (_, b) } } -> occur_check b
  in
  occur_check

let do_occur_check = ref true
let occur_check a t = if !do_occur_check then occur_check a t

(** Lower all type variables to given level. *)
let update_level level a =
  let x = Type.var ~level () in
  let x =
    match x.descr with Var { contents = Free x } -> x | _ -> assert false
  in
  occur_check x a

(** {1 Subtype checking/inference} *)

exception Incompatible

(** Approximated supremum of two types. We grow the second argument so that it
    has a chance be be greater than the first. No binding is performed by this
    function so that it should always be followed by a subtyping. *)
let rec sup ~pos a b =
  (* Printf.printf "  sup: %s \\/ %s\n%!" (Type.to_string a) (Type.to_string b); *)
  let sup = sup ~pos in
  let mk descr = Type.make ?pos descr in
  let scheme_sup t t' =
    match (t, t') with ([], t), ([], t') -> ([], sup t t') | _ -> t'
  in
  let rec meth_type l a =
    match (deref a).descr with
      | Meth ({ meth = l'; optional; scheme = t }, _) when l = l' ->
          Some (t, optional)
      | Meth (_, a) -> meth_type l a
      | _ -> None
  in
  let meth_sup m a b =
    let a = hide_meth m.meth a in
    let mb = meth_type m.meth b in
    let b = hide_meth m.meth b in
    match mb with
      | Some (t', optional) -> (
          try
            mk
              (Meth
                 ( {
                     m with
                     optional = m.optional || optional;
                     scheme = scheme_sup t' m.scheme;
                   },
                   sup a b ))
          with Incompatible -> sup a b)
      | None -> mk (Meth ({ m with optional = true }, sup a b))
  in
  let a = deref a in
  let b = deref b in
  if a == b then a
  else (
    match (a.descr, b.descr) with
      | v, v' when v == v' -> a
      | Var { contents = Free _ }, _ -> b
      | _, Var { contents = Free _ } -> a
      | Nullable a, Nullable b -> mk (Nullable (sup a b))
      | Nullable a, _ -> mk (Nullable (sup a b))
      | _, Nullable b -> mk (Nullable (sup a b))
      | List { t = a }, List { t = b } ->
          mk (List { t = sup a b; json_repr = `Tuple })
      | Arrow (p, a), Arrow (q, b) ->
          if List.length p <> List.length q then raise Incompatible;
          mk (Arrow (q, sup a b))
      | Tuple l, Tuple m ->
          if List.length l <> List.length m then raise Incompatible;
          mk (Tuple (List.map2 sup l m))
      | Custom c, Custom c' -> (
          try mk (Custom { c with typ = c.sup sup c.typ c'.typ })
          with _ -> raise Incompatible)
      | Meth (m, a), _ -> meth_sup m a b
      | _, Meth (m, b) -> meth_sup m b a
      | Constr { constructor = "source" }, _
      | _, Constr { constructor = "source" }
      | Constr { constructor = "format" }, _
      | _, Constr { constructor = "format" } ->
          b
      | ( Constr { constructor = c; params = a },
          Constr { constructor = d; params = b } ) ->
          if c <> d || List.length a <> List.length b then raise Incompatible;
          let params =
            List.map2
              (fun (v, a) (v', b) ->
                if v <> v' then raise Incompatible;
                (v, sup a b))
              a b
          in
          mk (Constr { constructor = c; params })
      | Getter a, Getter b -> mk (Getter (sup a b))
      | Getter a, Arrow ([], b) -> mk (Getter (sup a b))
      | Getter a, _ -> mk (Getter (sup a b))
      | Arrow ([], a), Getter b -> mk (Getter (sup a b))
      | _, Getter b -> mk (Getter (sup a b))
      | _, _ ->
          if !debug_subtyping then
            failwith
              (Printf.sprintf "\nFailed sup: %s \\/ %s\n\n%!" (Type.to_string a)
                 (Type.to_string b))
          else raise Incompatible)

let sup ~pos a b =
  let b' = sup ~pos a b in
  if !debug_subtyping && b' != b then
    Printf.printf "sup: %s \\/ %s = %s\n%! " (Type.to_string a)
      (Type.to_string b) (Type.to_string b');
  b'

exception Error of (Repr.t * Repr.t)

let () =
  Printexc.register_printer (function
    | Error (a, b) ->
        Some
          (Printf.sprintf "Typing error: %s vs %s" (Repr.to_string a)
             (Repr.to_string b))
    | _ -> None)

(** Ensure that a type satisfies a given constraint, i.e. morally that b <: c.
*)
let rec satisfies_constraint b c =
  match (deref b).descr with
    | Var { contents = Free v } ->
        v.constraints <- Constraints.add c v.constraints
    | _ ->
        c.satisfied ~subtype:( <: )
          ~satisfies:(fun b -> satisfies_constraint b c)
          b

and satisfies_constraints b = List.iter (satisfies_constraint b)

(** Make a variable link to given type. *)
and bind ?(variance = `Invariant) a b =
  let a0 = a in
  let v, a =
    match a.descr with
      | Var ({ contents = Free a } as v) -> (v, a)
      | _ -> assert false
  in
  if !debug then
    Printf.printf "\n%s := %s\n%!" (Type.to_string a0) (Type.to_string b);
  let b = deref b in
  occur_check a b;
  (* update_level a.level b; *)
  satisfies_constraints b (Constraints.elements a.constraints);
  let b = if b.pos = None then Type.make ?pos:a0.pos b.Type.descr else b in
  v.contents <- Link (variance, b)

(** Ensure that the type for the method [l] in [a] is a subtype of the one for
    the same method in [b]. *)
and unify_meth a b l =
  let {
    optional = optional1;
    meth = meth1;
    scheme = s1;
    json_name = json_name1;
  } =
    get_meth l a
  in
  let {
    optional = optional2;
    meth = meth2;
    scheme = s2;
    json_name = json_name2;
  } =
    get_meth l b
  in
  assert (meth1 = l && meth2 = l);
  (* Handle explicitly this case in order to avoid #1842. *)
  ((* We want to allow:
      - {foo:int?} <: {foo?:int}
      - {foo?:int?} <: {foo?:int}
      - {foo?:never} <: {foo?:int}
      and prohibit:
       - {foo?:int} <: {foo:int?} *)
   let s1 =
     match (optional1, optional2, (deref (snd s1)).descr) with
       | true, true, Never -> s2
       | _, true, Nullable t -> (fst s1, t)
       | true, false, _ -> raise (Error (Repr.make a, Repr.make b))
       | _ -> s1
   in
   (* TODO: we should perform proper type scheme subtyping, but this
         is a good approximation for now... *)
   try instantiate ~level:(-1) s1 <: instantiate ~level:(-1) s2
   with Error (a, b) ->
     let bt = Printexc.get_raw_backtrace () in
     Printexc.raise_with_backtrace
       (Error
          ( `Meth
              ( R.
                  {
                    name = l;
                    optional = optional1;
                    scheme = ([], a);
                    json_name = json_name1;
                  },
                `Ellipsis ),
            `Meth
              ( R.
                  {
                    name = l;
                    optional = optional2;
                    scheme = ([], b);
                    json_name = json_name2;
                  },
                `Ellipsis ) ))
       bt);
  try hide_meth l a <: hide_meth l b
  with Error (a, b) ->
    let bt = Printexc.get_raw_backtrace () in
    Printexc.raise_with_backtrace
      (Error
         ( `Meth
             ( R.
                 {
                   name = l;
                   optional = optional1;
                   scheme = ([], `Ellipsis);
                   json_name = json_name1;
                 },
               a ),
           `Meth
             ( R.
                 {
                   name = l;
                   optional = optional2;
                   scheme = ([], `Ellipsis);
                   json_name = json_name2;
                 },
               b ) ))
      bt

(** Ensure that a<:b, perform unification if needed. In case of error, generate
    an explanation. We recall that A <: B means that any value of type A can be
    passed where a value of type B can. This relation must be transitive. *)
and ( <: ) a b =
  if !debug || !debug_subtyping then
    Printf.printf "\n%s <: %s\n%!" (Type.to_string a) (Type.to_string b);
  if a != b then (
    match (a.descr, b.descr) with
      | a, b when a == b -> ()
      | Var { contents = Free v }, Var { contents = Free v' } when Var.eq v v'
        ->
          ()
      | _, Var ({ contents = Link (`Covariant, b') } as var) ->
          (* When the variable is covariant, we take the opportunity here to correct
             bad choices. For instance, if we took int, but then have a 'a?, we
             change our mind and use int? instead. *)
          let b'' = try sup ~pos:b'.pos a b' with Incompatible -> b' in
          (try
             b' <: b''
             (* The sup is allowed to return something invalid. See: https://github.com/savonet/liquidsoap/pull/3472 *)
           with e when !debug ->
             failwith
               (Printf.sprintf "invalid sup: %s !< %s (%s)" (Type.to_string b')
                  (Type.to_string b'') (Printexc.to_string e)));
          if b'' != b' then var.contents <- Link (`Covariant, b'');
          a <: b''
      | Var ({ contents = Link (`Covariant, a') } as var), _ ->
          var.contents <- Link (`Invariant, a');
          a <: b
      | _, Var { contents = Link (_, b) } -> a <: b
      | Var { contents = Link (_, a) }, _ -> a <: b
      | Constr c1, Constr c2 when c1.constructor = c2.constructor ->
          let rec aux pre p1 p2 =
            match (p1, p2) with
              | (v1, h1) :: t1, (v2, h2) :: t2 ->
                  begin
                    try
                      let v = if v1 = v2 then v1 else `Invariant in
                      match v with
                        | `Covariant -> h1 <: h2
                        | `Invariant ->
                            mk_invariant h2;
                            h1 <: h2;
                            mk_invariant h2
                    with Error (a, b) ->
                      let bt = Printexc.get_raw_backtrace () in
                      let post = List.map (fun (v, _) -> (v, `Ellipsis)) t1 in
                      Printexc.raise_with_backtrace
                        (Error
                           ( `Constr (c1.constructor, pre @ [(v1, a)] @ post),
                             `Constr (c1.constructor, pre @ [(v2, b)] @ post) ))
                        bt
                  end;
                  aux ((v1, `Ellipsis) :: pre) t1 t2
              | [], [] -> ()
              | _ -> assert false
            (* same name => same arity *)
          in
          aux [] c1.params c2.params
      | List { t = t1; json_repr = repr1 }, List { t = t2; json_repr = repr2 }
        -> (
          try t1 <: t2
          with Error (a, b) ->
            raise (Error (`List (a, repr1), `List (b, repr2))))
      | Nullable t1, Nullable t2 -> (
          try t1 <: t2
          with Error (a, b) -> raise (Error (`Nullable a, `Nullable b)))
      | Tuple l, Tuple m ->
          if List.length l <> List.length m then (
            let l = List.map (fun _ -> `Ellipsis) l in
            let m = List.map (fun _ -> `Ellipsis) m in
            raise (Error (`Tuple l, `Tuple m)));
          let n = ref 0 in
          List.iter2
            (fun a b ->
              incr n;
              try a <: b
              with Error (a, b) ->
                let bt = Printexc.get_raw_backtrace () in
                let l = List.init (!n - 1) (fun _ -> `Ellipsis) in
                let l' = List.init (List.length m - !n) (fun _ -> `Ellipsis) in
                Printexc.raise_with_backtrace
                  (Error (`Tuple (l @ [a] @ l'), `Tuple (l @ [b] @ l')))
                  bt)
            l m
      | Arrow (l12, t), Arrow (l, t') ->
          (* Here, it must be that l12 = l1@l2 where l1 is essentially l modulo
             order and either l2 is erasable and t<:t'. *)
          let ellipsis = (false, "", `Range_Ellipsis) in
          let elide (o, l, _) = (o, l, `Ellipsis) in
          let l1, l2 =
            List.fold_left
              (* Start with [l2:=l12], [l1:=[]] and move each param [o,lbl]
                 required by [l] from [l2] to [l1]. *)
              (fun (l1, l2) (o, lbl, t) ->
                (* Search for a param with label lbl. Returns the first
                   matching parameter and the list without it. *)
                let rec get_param acc = function
                  | [] ->
                      raise
                        (Error
                           ( `Arrow
                               ( List.rev_append l1 (List.map elide l2),
                                 `Ellipsis ),
                             `Arrow
                               ( List.rev (ellipsis :: (o, lbl, `Ellipsis) :: l1),
                                 `Ellipsis ) ))
                  | (o', lbl', t') :: tl ->
                      if lbl = lbl' then ((o', lbl', t'), List.rev_append acc tl)
                      else get_param ((o', lbl', t') :: acc) tl
                in
                let (o', lbl, t'), l2' = get_param [] l2 in
                (* Check on-the-fly that the types match. *)
                begin
                  try
                    if (not o') && o then raise (Error (`Ellipsis, `Ellipsis));
                    t <: t'
                  with Error (t, t') ->
                    let bt = Printexc.get_raw_backtrace () in
                    let make o t =
                      `Arrow
                        (List.rev (ellipsis :: (o, lbl, t) :: l1), `Ellipsis)
                    in
                    Printexc.raise_with_backtrace
                      (Error (make o' t', make o t))
                      bt
                end;
                ((o, lbl, `Ellipsis) :: l1, l2'))
              ([], l12) l
          in
          let l1 = List.rev l1 in
          ignore l1;
          if
            l2 = [] || (forget_arguments && List.for_all (fun (o, _, _) -> o) l2)
          then (
            try t <: t'
            with Error (t, t') ->
              let bt = Printexc.get_raw_backtrace () in
              Printexc.raise_with_backtrace
                (Error (`Arrow ([ellipsis], t), `Arrow ([ellipsis], t')))
                bt)
          else (
            let l2 = List.map (fun (o, l, t) -> (o, l, Repr.make t)) l2 in
            raise
              (Error
                 ( `Arrow (l2 @ [ellipsis], `Ellipsis),
                   `Arrow ([ellipsis], `Ellipsis) )))
      | Custom c, Custom c' -> (
          try c.subtype ( <: ) c.typ c'.typ
          with _ -> raise (Error (Repr.make a, Repr.make b)))
      | Getter t1, Getter t2 -> (
          try t1 <: t2
          with Error (a, b) -> raise (Error (`Getter a, `Getter b)))
      | Arrow ([], t1), Getter t2 -> (
          try t1 <: t2
          with Error (a, b) -> raise (Error (`Arrow ([], a), `Getter b)))
      | Never, Var { contents = Free _ } | Var { contents = Free _ }, Never ->
          raise (Error (Repr.make a, Repr.make b))
      | Var { contents = Free _ }, _ -> (
          try bind a b
          with Occur_check _ | Unsatisfied_constraint ->
            (* Can't do more concise than a full representation, as the problem
               isn't local. *)
            raise (Error (Repr.make a, Repr.make b)))
      | _, Var { contents = Free _ } -> (
          try bind ~variance:`Covariant b a
          with Occur_check _ | Unsatisfied_constraint ->
            let bt = Printexc.get_raw_backtrace () in
            Printexc.raise_with_backtrace (Error (Repr.make a, Repr.make b)) bt)
      | _, Nullable t2 -> (
          try a <: t2 with Error (a, b) -> raise (Error (a, `Nullable b)))
      | Meth ({ meth = l }, _), _ when Type.has_meth b l -> unify_meth a b l
      | _, Meth ({ meth = l }, _) when Type.has_meth a l -> unify_meth a b l
      | _, Meth ({ meth = l; optional; scheme = g2, t2; json_name }, c) -> (
          let a' = demeth a in
          match a'.descr with
            | Var { contents = Free _ } ->
                let optional, t2 =
                  match (deref t2).descr with
                    | Type.(Nullable t) -> (true, t)
                    | _ -> (optional, t2)
                in
                a'
                <: make
                     (Meth
                        ( {
                            meth = l;
                            optional;
                            scheme = (g2, t2);
                            doc = "";
                            json_name = None;
                          },
                          var () ));
                a <: b
            | _ when optional || (deref t2).descr = Never -> a <: hide_meth l c
            | _ ->
                raise
                  (Error
                     ( Repr.make a,
                       `Meth
                         ( R.
                             {
                               name = l;
                               optional;
                               scheme = ([], `Ellipsis);
                               json_name;
                             },
                           `Ellipsis ) )))
      | Meth (m, u1), _ -> opt_meth m.meth u1 <: b
      | _, Getter t2 -> (
          try a <: t2 with Error (a, b) -> raise (Error (a, `Getter b)))
      | _, _ ->
          (* The superficial representation is enough for explaining the
             mismatch. *)
          let filter () =
            let already = ref false in
            function
            | { descr = Var { contents = Link _ }; _ } -> false
            | _ ->
                let x = !already in
                already := true;
                x
          in
          let a = Repr.make ~filter_out:(filter ()) a in
          let b = Repr.make ~filter_out:(filter ()) b in
          raise (Error (a, b)))

let ( >: ) a b =
  try b <: a
  with Error (y, x) ->
    let bt = Printexc.get_raw_backtrace () in
    Printexc.raise_with_backtrace (Repr.Type_error (true, b, a, y, x)) bt

let ( <: ) a b =
  try a <: b
  with Error (x, y) ->
    let bt = Printexc.get_raw_backtrace () in
    Printexc.raise_with_backtrace (Repr.Type_error (false, a, b, x, y)) bt