Source file patternMatchingRecognizer.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
open REBracketExpressionParser
open REBracketExpressionParser.MenhirInterpreter
open CST
(**
This module implements a recognizer for pattern-matching as
specified in section 2.13 of the POSIX standard.
The main difficulty is the implementation of a parser for RE
bracket expressions whose specification is 9.3.5 of the POSIX
standard. The lexer cannot be easily expressed by a sole ocamllex
specification because of some position-dependent lexical rules.
For this reason, we wrap the lexer generated by
{!REBracketExpressionLexer} in a function that takes care of
these adhoc position-dependent rules.
Notice that we again use the incremental interface of Menhir but
this is not mandatory: a non incremental parser would work as
well.
*)
(** [re_bracket_lexing_mode] is used to interpret some special
characters depending on the parsing context. *)
(** [recognize_re_bracket_expression s start] *)
let recognize_re_bracket_expression s start =
let module Prelexer : sig
val current_position : unit -> int
val lexing_position : unit -> Lexing.position
val next_token : unit -> token * Lexing.position * Lexing.position
val after_starting_hat : unit -> bool
val after_starting_bracket : unit -> bool
val just_before_ending_bracket : unit -> bool
val read_string : unit -> string
end = struct
let current_position = ref start
let next_char () =
if !current_position < String.length s then (
let c = s.[!current_position] in
incr current_position;
Some c
) else None
let eof_reached () =
!current_position >= String.length s
let lexbuf =
Lexing.from_function @@ fun b count ->
let rec aux i =
if i = count then count
else match next_char () with
| None -> i
| Some c -> Bytes.set b i c; aux (i + 1)
in
aux 0
let lookahead_buffer = Queue.create ()
let with_positions token =
(token, lexbuf.Lexing.lex_start_p, lexbuf.Lexing.lex_curr_p)
let lex () =
REBracketExpressionLexer.token lexbuf |> with_positions
let next_token () =
if Queue.is_empty lookahead_buffer then
lex ()
else if eof_reached () then
with_positions REBracketExpressionParser.EOF
else
Queue.pop lookahead_buffer
let read_string () =
String.sub s start (!current_position - start)
let current_position () =
start + lexbuf.Lexing.lex_start_p.pos_cnum
let lexing_position () = lexbuf.Lexing.lex_start_p
let after_starting_bracket () =
(lexing_position ()).pos_cnum = 1
let just_before_ending_bracket () =
(lexing_position ()).pos_cnum = String.length s - 2 - start
let after_starting_hat () =
(lexing_position ()).pos_cnum = 2 && s.[1] = '^'
end
in
(**
The specification phrasing is a bit ackward. We interpret it as a
definition for tokens HAT, MINUS and RBRACKET as well a definition
for META_CHAR which is supposed to be the union of these three tokens.
As a consequence, META_CHAR is better expressed as a non terminal
`meta_char`. We decided to slightly change the POSIX standard grammar
in that direction because it seems to make more sense.
*)
let next_token () =
let rewrite_token f =
let (token, p1, p2) = Prelexer.next_token () in
(f token, p1, p2)
in
rewrite_token (function
| HAT ->
if Prelexer.after_starting_bracket () then
HAT
else
COLL_ELEM_SINGLE '!'
| (COLL_ELEM_SINGLE '^') as token ->
if Prelexer.after_starting_bracket ()
&& Options.error_on_unspecified ()
then
let msg =
"Unquoted <circumflex> at the beginning of a bracket expression \
has an unspecified semantics."
in
raise (Errors.DuringLexing (Prelexer.lexing_position (), msg))
else
token
| (RBRACKET | MINUS) as token ->
let final_minus =
(token = MINUS) && (Prelexer.just_before_ending_bracket ())
in
if Prelexer.(after_starting_bracket ()
|| after_starting_hat ()
|| final_minus)
then
COLL_ELEM_SINGLE (if token = MINUS then '-' else ']')
else
token
| token ->
token)
in
let rec parse checkpoint =
match checkpoint with
| InputNeeded _ ->
parse (offer checkpoint (next_token ()))
| Accepted cst ->
Some (cst, Prelexer.read_string (), Prelexer.current_position ())
| Rejected ->
None
| _ ->
parse (resume checkpoint)
in
parse (Incremental.bracket_expression (Prelexer.lexing_position ()))
(** [process s] recognizes pattern-matching expressions inside [s]
returning the resulting stream of word components, in reverse
order. *)
let process s : (string * word_component) list =
let b = Buffer.create 31 in
let rec analyze output i =
let flush () =
if Buffer.length b > 0 then
let w = Buffer.contents b in
(w, WordLiteral w) :: output
else
output
in
let produce ?(next=i+1) char ast =
let output = flush () in
Buffer.clear b;
analyze ((char, ast) :: output) next
in
let push char =
Buffer.add_char b char;
analyze output (i + 1)
in
if i >= String.length s then
flush ()
else
match s.[i] with
| '?' -> produce "?" WordGlobAny
| '*' -> produce "*" WordGlobAll
| '[' -> begin match recognize_re_bracket_expression s i with
| Some (re_bracket_exp, rs, j) ->
produce rs (WordReBracketExpression re_bracket_exp) ~next:j
| None ->
push '['
end
| c -> push c
in
analyze [] 0 |> List.rev