Source file batched_skiplist.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
open Picos
module Make (V : Map.OrderedType) = struct
module Sequential = struct
type t = { hdr : node; level : int ref; maxlevel : int; nil : node }
and node = Hd of node array | Node of data | Null
and data = { mutable value : V.t; forward : node array }
let show to_string = function
| Hd _ -> "Hd"
| Node { value; _ } -> Printf.sprintf "Node(%s)" (to_string value)
| Null -> "Null"
let[@warning "-32"] to_string to_string = function
| Hd forward ->
"Hd -> [|"
^ Array.fold_right
(fun node acc -> acc ^ "; " ^ show to_string node)
forward ""
^ "|]"
| Node { forward; _ } as n ->
show to_string n ^ "-> [|"
^ Array.fold_right
(fun node acc -> acc ^ "; " ^ show to_string node)
forward ""
^ "|]"
| Null -> "Null"
let ( !> ) = function
| Null -> failwith "[!>] Tried to dereference Null"
| Hd forward | Node { forward; _ } -> forward
let ( !^ ) = function
| Null -> failwith "[!^] Tried to dereference Null"
| Hd _ -> failwith "[!^] Tried to dereference Hdr"
| Node r -> r
let ( *= ) v1 v2 = V.compare v1 v2 = 0
let ( *< ) v1 v2 = V.compare v1 v2 = -1
let compare n1 n2 =
match (n1, n2) with
| Null, Null ->
assert (n1 == n2);
0
| _, Null -> -1
| Null, _ -> 1
| Hd r1, Hd r2 ->
assert (r1 == r2);
0
| Hd _, _ -> -1
| _, Hd _ -> 1
| Node d1, Node d2 -> V.compare d1.value d2.value
let rec log2 n = if n <= 1 then 0 else 1 + log2 (n asr 1)
let init ~size () =
let maxlevel = log2 size in
let nil = Null in
{ hdr = Hd (Array.make (maxlevel + 1) nil); level = ref 0; maxlevel; nil }
let random_level t =
let lvl = ref 0 in
while Random.float 1. < 0.5 && !lvl < t.maxlevel do
incr lvl
done;
!lvl
let make_node t lvl value =
Node { value; forward = Array.make (lvl + 1) t.nil }
let mem t elt =
let x = ref t.hdr in
for i = !(t.level) downto 0 do
while
match !>(!x).(i) with
| Null | Hd _ -> false
| Node { value; _ } -> value *< elt
do
x := !>(!x).(i)
done
done;
x := !>(!x).(0);
match !x with Null | Hd _ -> false | Node { value; _ } -> value *= elt
let insert t elt =
let update = Array.make (t.maxlevel + 1) t.nil in
let x = ref t.hdr in
for i = !(t.level) downto 0 do
while
match !>(!x).(i) with
| Null | Hd _ -> false
| Node { value; _ } -> value *< elt
do
x := !>(!x).(i)
done;
update.(i) <- !x
done;
let x = !>(!x).(0) in
if match x with Null | Hd _ -> false | Node { value; _ } -> value *= elt
then !^x.value <- elt
else
let lvl = random_level t in
if lvl > !(t.level) then (
for i = !(t.level) + 1 to lvl do
update.(i) <- t.hdr
done;
t.level := lvl);
let x = make_node t lvl elt in
for i = 0 to lvl do
!>x.(i) <- !>(update.(i)).(i);
!>(update.(i)).(i) <- x
done
let size t =
let rec aux acc = function
| Null -> acc
| Hd forward -> aux acc forward.(0)
| Node { forward; _ } -> aux (acc + 1) forward.(0)
in
aux 0 t.hdr
let validate ?(to_string = fun _ -> "<opaque>") t =
let rec walk prev = function
| Null -> ()
| Hd forward -> walk prev forward.(0)
| Node { value; forward; _ } ->
let vals = value |> to_string in
let prevs = prev |> to_string in
if value < prev then
Printf.printf "Ordering error %s -> %s\n" vals prevs
else if value = prev then
Printf.printf "Duplicate error %s -> %s\n" vals prevs;
walk value forward.(0)
in
let starting_point = !>(t.hdr).(0) in
let first_val = !^starting_point.value in
walk first_val !>starting_point.(0)
let print_slist t to_string =
let print_level t lvl =
let rec aux = function
| Null -> print_endline "Null"
| Hd forward ->
Printf.printf "Level %d : Hd -> " lvl;
aux forward.(lvl)
| Node { value; forward; _ } ->
let val_str = to_string value in
Printf.printf "(%s) -> " val_str;
aux forward.(lvl)
in
aux t.hdr
in
for lvl = !(t.level) downto 0 do
print_level t lvl;
Printf.printf "\n"
done
end
module Batched = struct
type t = Sequential.t
type cfg = { size : int }
type 'a op =
| Insert : V.t -> unit op
| Member : V.t -> bool op
| Size : int op
type wrapped_op = Mk : 'a op * 'a Picos.Computation.t -> wrapped_op
let init ?(cfg = { size = Int.shift_left 1 30 - 1 }) () =
Sequential.init ~size:cfg.size ()
type intermediate = {
batch_size : int;
maxinsertlevel : int ref;
level_arr : int array;
new_node_arr : Sequential.node array;
new_node_back_arr : Sequential.node array;
prev_node_idx : int array;
}
let build_node t idx elem
{ maxinsertlevel; new_node_arr; new_node_back_arr; level_arr; _ } =
let rdm_level = Sequential.random_level t in
level_arr.(idx) <- rdm_level;
if rdm_level > !maxinsertlevel then maxinsertlevel := rdm_level;
let new_node = Sequential.make_node t rdm_level elem in
let new_node_back = Sequential.make_node t rdm_level elem in
new_node_arr.(idx) <- new_node;
new_node_back_arr.(idx) <- new_node_back
let relate_nodes t idx
{
batch_size;
maxinsertlevel;
level_arr;
new_node_arr;
new_node_back_arr;
prev_node_idx;
_;
} =
let exception Break in
let node = new_node_arr.(idx) in
let next = ref (idx + 1) in
for lvl = 0 to level_arr.(idx) do
Sequential.(!>node.(lvl) <- t.nil);
try
for id = !next to batch_size - 1 do
if lvl <= level_arr.(id) then (
Sequential.(!>node.(lvl) <- new_node_arr.(id));
Sequential.(!>(new_node_back_arr.(id)).(lvl) <- node);
prev_node_idx.(((!maxinsertlevel + 1) * id) + lvl) <- idx;
next := id;
raise Break)
done
with Break -> ()
done
let merge_list t idx
{
maxinsertlevel;
new_node_arr;
level_arr;
new_node_back_arr;
prev_node_idx;
_;
} =
let open Sequential in
let exception Return in
let node = new_node_arr.(idx) in
let node_back = new_node_back_arr.(idx) in
let update = Array.make (t.Sequential.maxlevel + 1) t.nil in
let x = ref t.hdr in
try
for i = !(t.level) downto 0 do
while
match Sequential.(!>(!x)).(i) with
| Null | Hd _ -> false
| Node { value; _ } -> Sequential.(value *< !^node.value)
do
x := Sequential.(!>(!x).(i))
done;
(match !x with
| Null -> ()
| Hd forward | Node { forward; _ } ->
if forward.(i) != t.nil && (!^(forward.(i)).value *= !^node.value)
then raise Return);
update.(i) <- !x
done;
for i = 0 to level_arr.(idx) do
if !>node.(i) == t.nil || compare !>(update.(i)).(i) !>node.(i) <= 0
then
if !>(update.(i)).(i) != t.nil then !>node.(i) <- !>(update.(i)).(i);
let prev_node_id =
prev_node_idx.(((!maxinsertlevel + 1) * idx) + i)
in
if
prev_node_id = -1
|| compare new_node_arr.(prev_node_id) update.(i) <= 0
then (
!>node_back.(i) <- update.(i);
prev_node_idx.(((!maxinsertlevel + 1) * idx) + i) <- -2)
done
with Return -> ()
let remove_duplicates arr num_elements =
if num_elements <= 1 then num_elements
else
let j = ref 0 in
for i = 0 to num_elements - 2 do
if arr.(i) <> arr.(i + 1) then (
arr.(!j) <- arr.(i);
incr j)
done;
arr.(!j) <- arr.(num_elements - 1);
incr j;
!j
let par_insert t (elems : V.t array) =
let open Sequential in
Array.sort V.compare elems;
let num_elems = remove_duplicates elems (Array.length elems) in
let intermediary =
{
batch_size = num_elems;
maxinsertlevel = t.level;
level_arr = Array.make num_elems 0;
new_node_arr = Array.make num_elems t.nil;
new_node_back_arr = Array.make num_elems t.nil;
prev_node_idx = Array.make ((t.maxlevel + 1) * num_elems) (-1);
}
in
for idx = 0 to num_elems - 1 do
build_node t idx elems.(idx) intermediary
done;
for idx = 0 to num_elems - 1 do
relate_nodes t idx intermediary
done;
Utils.parallel_for ~start:0 ~finish:(num_elems - 1) (fun idx ->
merge_list t idx intermediary);
for i = 0 to num_elems - 1 do
for j = 0 to intermediary.level_arr.(i) do
if
intermediary.prev_node_idx.((!(intermediary.maxinsertlevel) + 1)
* i
+ j)
= -2
then
let back_node = !>(intermediary.new_node_back_arr.(i)).(j) in
!>back_node.(j) <- intermediary.new_node_arr.(i)
done
done
let par_search t (elems : V.t array) : bool array =
let result_arr = Array.make (Array.length elems) false in
Utils.parallel_for ~start:0
~finish:(Array.length elems - 1)
(fun i -> result_arr.(i) <- Sequential.mem t elems.(i));
result_arr
let par_size t (elems : int array) : int array =
let size = Sequential.size t in
Utils.parallel_for ~start:0
~finish:(Array.length elems - 1)
(fun i -> elems.(i) <- size);
elems
let run t (ops : wrapped_op array) : unit =
let inserts : V.t list ref = ref [] in
let searches : (V.t * (bool -> unit)) list ref = ref [] in
let size = lazy (Sequential.size t) in
Array.iter
(function
| Mk (Size, comp) -> Computation.return comp (Lazy.force size)
| Mk (Member vl, comp) ->
searches := (vl, Computation.return comp) :: !searches
| Mk (Insert vl, comp) ->
Computation.return comp ();
inserts := vl :: !inserts)
ops;
let searches = Array.of_list !searches in
Utils.parallel_for ~start:0
~finish:(Array.length searches - 1)
(fun i ->
let key, kont = searches.(i) in
let result = Sequential.mem t key in
kont result);
let inserts = Array.of_list !inserts in
par_insert t inserts
end
include Obatcher.Make (Batched)
let insert t v = exec t (Batched.Insert v)
let mem t v = exec t (Batched.Member v)
let sz t = exec t Batched.Size
end