1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
module type S = sig
module Poly : Polynomial.S
type var
type polynomial_expr =
| Const of Poly.t
| Var of var
| Mult_scalar of Poly.Coeff.t * polynomial_expr
| Add of polynomial_expr * polynomial_expr
| Sub of polynomial_expr * polynomial_expr
| Mult of polynomial_expr * polynomial_expr
| Power of polynomial_expr * int
| Compose of polynomial_expr * polynomial_expr list
| Derive of polynomial_expr * int
val make : ?n:int -> ?d:int -> ?homogen:bool -> string -> polynomial_expr
val const : Poly.t -> polynomial_expr
val scalar : Poly.Coeff.t -> polynomial_expr
val monomial : Monomial.t -> polynomial_expr
val mult_scalar : Poly.Coeff.t -> polynomial_expr -> polynomial_expr
val add : polynomial_expr -> polynomial_expr -> polynomial_expr
val sub : polynomial_expr -> polynomial_expr -> polynomial_expr
val mult : polynomial_expr -> polynomial_expr -> polynomial_expr
val power : polynomial_expr -> int -> polynomial_expr
val compose : polynomial_expr -> polynomial_expr list -> polynomial_expr
val derive : polynomial_expr -> int -> polynomial_expr
val of_list : (Monomial.t * polynomial_expr) list -> polynomial_expr
exception Dimension_error
val to_list : polynomial_expr -> (Monomial.t * polynomial_expr) list
val nb_vars : polynomial_expr -> int
val degree : polynomial_expr -> int
val is_homogeneous : polynomial_expr -> bool
val param_vars : polynomial_expr -> var list
val ( !! ) : Poly.t -> polynomial_expr
val ( ?? ) : int -> polynomial_expr
val ( ! ) : Poly.Coeff.t -> polynomial_expr
val ( *. ) : Poly.Coeff.t -> polynomial_expr -> polynomial_expr
val ( ~- ) : polynomial_expr -> polynomial_expr
val ( + ) : polynomial_expr -> polynomial_expr -> polynomial_expr
val ( - ) : polynomial_expr -> polynomial_expr -> polynomial_expr
val ( * ) : polynomial_expr -> polynomial_expr -> polynomial_expr
val ( / ) : polynomial_expr -> Poly.Coeff.t -> polynomial_expr
val ( /. ) : Poly.Coeff.t -> Poly.Coeff.t -> polynomial_expr
val ( ** ) : polynomial_expr -> int -> polynomial_expr
val ( >= ) : polynomial_expr -> polynomial_expr -> polynomial_expr
val ( <= ) : polynomial_expr -> polynomial_expr -> polynomial_expr
val pp : Format.formatter -> polynomial_expr -> unit
val pp_names : string list -> Format.formatter -> polynomial_expr -> unit
type options = {
sdp : Sdp.options;
verbose : int;
scale : bool;
trace_obj : bool;
dualize : bool;
monoms : Monomial.t list list;
pad : float;
pad_list : float list
}
val default : options
type obj =
Minimize of polynomial_expr | Maximize of polynomial_expr | Purefeas
type values
type 'a witness = Monomial.t array * 'a array array
exception Not_linear
val solve : ?options:options -> ?solver:Sdp.solver ->
obj -> polynomial_expr list ->
SdpRet.t * (float * float) * values * float witness list
val value : polynomial_expr -> values -> Poly.Coeff.t
val value_poly : polynomial_expr -> values -> Poly.t
val check : ?options:options -> ?values:values -> polynomial_expr ->
float witness -> bool
val check_round : ?options:options -> ?values:values ->
polynomial_expr list -> float witness list ->
(values * Scalar.Q.t witness list) option
end
module Make (P : Polynomial.S) : S with module Poly = P = struct
module Poly = P
type polynomial_var = {
name : Ident.t;
poly : (Monomial.t * Ident.t) list
}
type var = Vscalar of Ident.t | Vpoly of polynomial_var
type polynomial_expr =
| Const of Poly.t
| Var of var
| Mult_scalar of Poly.Coeff.t * polynomial_expr
| Add of polynomial_expr * polynomial_expr
| Sub of polynomial_expr * polynomial_expr
| Mult of polynomial_expr * polynomial_expr
| Power of polynomial_expr * int
| Compose of polynomial_expr * polynomial_expr list
| Derive of polynomial_expr * int
let const p = Const p
let scalar c = Const (Poly.const c)
let monomial m = Const (Poly.monomial m)
let mult_scalar c e = Mult_scalar (c, e)
let add e1 e2 = Add (e1, e2)
let sub e1 e2 = Sub (e1, e2)
let mult e1 e2 = Mult (e1, e2)
let power e d = Power (e, d)
let compose e l = Compose (e, l)
let derive e i = Derive (e, i)
let pp_names names fmt e =
let rec pp_prior prior fmt = function
| Const p ->
let par =
2 < prior || 0 < prior && List.length (Poly.to_list p) >= 2 in
Format.fprintf fmt (if par then "(%a)" else "%a")
(Poly.pp_names names) p
| Var (Vscalar id) -> Ident.pp fmt id
| Var (Vpoly p) -> Ident.pp fmt p.name
| Mult_scalar (n, e) -> Format.fprintf fmt
(if 1 < prior then "(@[%a@ * %a@])" else "@[%a@ * %a@]")
Poly.Coeff.pp n (pp_prior 1) e
| Add (e1, e2) -> Format.fprintf fmt
(if 0 < prior then "(@[%a@ + %a@])" else "@[%a@ + %a@]")
(pp_prior 0) e1 (pp_prior 0) e2
| Sub (e1, e2) -> Format.fprintf fmt
(if 0 < prior then "(@[%a@ - %a@])" else "@[%a@ - %a@]")
(pp_prior 0) e1 (pp_prior 1) e2
| Mult (e1, e2) -> Format.fprintf fmt
(if 1 < prior then "(@[%a@ * %a@])" else "@[%a@ * %a@]")
(pp_prior 1) e1 (pp_prior 1) e2
| Power (e, d) -> Format.fprintf fmt "%a^%d" (pp_prior 3) e d
| Compose (e, el) ->
Format.fprintf fmt "%a(@[%a@])" (pp_prior 2) e
(Utils.pp_list ~sep:",@ " (pp_prior 0)) el
| Derive (e, i) ->
let m = Array.to_list (Array.make i 0) @ [1] in
Format.fprintf fmt "d/d%a(%a)"
(Monomial.pp_names names) (Monomial.of_list m)
(pp_prior 0) e in
pp_prior 0 fmt e
let pp = pp_names []
let of_list l =
let l = List.rev l in
List.fold_left
(fun e (m, e') -> add (mult e' (monomial m)) e)
(const Poly.zero) l
module PEPoly =
Polynomial.Make
(Scalar.Make
(struct
type t = polynomial_expr
let compare = Stdlib.compare
let zero = const (Poly.zero)
let one = const (Poly.one)
let of_float _ = assert false
let to_float _ = assert false
let of_q _ = assert false
let to_q _ = assert false
let add e1 e2 = match e1, e2 with
| Const p1, Const p2 -> Const (Poly.add p1 p2)
| _ -> Add (e1, e2)
let sub e1 e2 = match e1, e2 with
| Const p1, Const p2 -> Const (Poly.sub p1 p2)
| _ -> Sub (e1, e2)
let mult e1 e2 = match e1, e2 with
| Const p1, Const p2 -> Const (Poly.mult p1 p2)
| _ -> Mult (e1, e2)
let div _ _ = assert false
let pp = pp
end))
exception Dimension_error
let to_list e =
let rec aux e = match e with
| Const p ->
Poly.to_list p
|> List.map (fun (m, c) -> m, const (Poly.const c))
|> PEPoly.of_list
| Var (Vscalar _) -> PEPoly.const e
| Var (Vpoly p) ->
List.rev_map (fun (m, id) -> m, Var (Vscalar id)) p.poly
|> PEPoly.of_list
| Mult_scalar (c, e) -> PEPoly.mult_scalar (const (Poly.const c)) (aux e)
| Add (e1, e2) -> PEPoly.add (aux e1) (aux e2)
| Sub (e1, e2) -> PEPoly.sub (aux e1) (aux e2)
| Mult (e1, e2) -> PEPoly.mult (aux e1) (aux e2)
| Power (e, n) -> PEPoly.power (aux e) n
| Compose (e, el) -> PEPoly.compose (aux e) (List.map aux el)
| Derive (e, n) -> PEPoly.derive (aux e) n in
try PEPoly.to_list (aux e)
with PEPoly.Dimension_error -> raise Dimension_error
let make ?n ?d ?homogen s =
let n = match n with Some n -> n | None -> 1 in
let d = match d with Some d -> d | None -> 1 in
let homogen = match homogen with Some h -> h | None -> false in
if n <= 1 && d <= 1 then Var (Vscalar (Ident.create s)) else
let name = Ident.create s in
let l =
let mons =
(if homogen then Monomial.list_eq else Monomial.list_le) n d in
let s = Format.asprintf "%a" Ident.pp name ^ "_" in
let l, _ =
List.fold_left
(fun (l, i) m ->
(m, Ident.create (s ^ string_of_int i)) :: l, i + 1)
([], 0) mons in
List.rev l in
Var (Vpoly { name = name; poly = l })
let nb_vars e = to_list e |> PEPoly.of_list |> PEPoly.nb_vars
let degree e = to_list e |> PEPoly.of_list |> PEPoly.degree
let is_homogeneous e = to_list e |> PEPoly.of_list |> PEPoly.is_homogeneous
let param_vars e =
let rec aux env = function
| Const _p -> env
| Var ((Vscalar id) as v) | Var ((Vpoly { name = id; poly = _ }) as v) ->
Ident.Map.add id v env
| Mult_scalar (_, e) | Power (e, _) -> aux env e
| Add (e1, e2) | Sub (e1, e2) | Mult (e1, e2) -> aux (aux env e1) e2
| Compose (e, el) -> List.fold_left aux (aux env e) el
| Derive (e, _) -> aux env e in
aux Ident.Map.empty e |> Ident.Map.bindings |> List.map snd
module LinExprSC = LinExpr.Make (Poly.Coeff)
module LEPoly = Polynomial.Make (LinExpr.MakeScalar (LinExprSC))
exception Not_linear
let scalarize (e : polynomial_expr) : LEPoly.t =
let rec scalarize = function
| Const p ->
Poly.to_list p
|> List.map (fun (m, c) -> m, LinExprSC.const c)
|> LEPoly.of_list
| Var (Vscalar id) -> LEPoly.mult_scalar (LinExprSC.var id) LEPoly.one
| Var (Vpoly p) ->
List.rev_map (fun (m, id) -> m, LinExprSC.var id) p.poly
|> LEPoly.of_list
| Mult_scalar (n, e) ->
LEPoly.mult_scalar (LinExprSC.const n) (scalarize e)
| Add (e1, e2) -> LEPoly.add (scalarize e1) (scalarize e2)
| Sub (e1, e2) -> LEPoly.sub (scalarize e1) (scalarize e2)
| Mult (e1, e2) -> LEPoly.mult (scalarize e1) (scalarize e2)
| Power (e, d) -> LEPoly.power (scalarize e) d
| Compose (e, el) -> LEPoly.compose (scalarize e) (List.map scalarize el)
| Derive (e, i) -> LEPoly.derive (scalarize e) i in
try scalarize e
with
| LEPoly.Dimension_error -> raise Dimension_error
| LinExpr.Not_linear -> raise Not_linear
type options = {
sdp : Sdp.options;
verbose : int;
scale : bool;
trace_obj : bool;
dualize : bool;
monoms : Monomial.t list list;
pad : float;
pad_list : float list
}
let default = {
sdp = Sdp.default;
verbose = 0;
scale = true;
trace_obj = false;
dualize = false;
monoms = [];
pad = 2.;
pad_list = []
}
type obj =
Minimize of polynomial_expr | Maximize of polynomial_expr | Purefeas
module Dualize = Dualize.Make (Poly.Coeff)
type dualize_details = float Dualize.details_val Ident.Map.t
* (polynomial_expr * Ident.t array array) list
type values = Poly.Coeff.t Ident.Map.t * dualize_details option
type 'a witness = Monomial.t array * 'a array array
let solve ?options ?solver obj el =
let options, sdp_options =
match options with None -> default, None | Some o -> o, Some o.sdp in
let obj, obj_sign = match obj with
| Minimize obj -> Mult_scalar (Poly.Coeff.minus_one, obj), -1.
| Maximize obj -> obj, 1.
| Purefeas -> Const (Poly.zero), 0. in
let var_idx, _ =
let env =
let e = List.fold_left add (const Poly.zero) (obj :: el) in
List.fold_left
(fun env v ->
match v with
| Vscalar id -> Ident.Set.add id env
| Vpoly { name = _; poly = l } ->
List.fold_left (fun env (_, id) -> Ident.Set.add id env) env l)
Ident.Set.empty (param_vars e) in
Ident.Set.fold
(fun id (m, i) -> Ident.Map.add id i m, i + 1)
env (Ident.Map.empty, 0) in
let (obj, scalarized), tscalarize =
Utils.profile (fun () ->
let obj = scalarize obj in
let scalarized = List.map scalarize el in
obj, scalarized) in
if options.verbose > 2 then
Format.printf "time for scalarize: %.3fs@." tscalarize;
let scaling_factors =
let sqrt_norm e =
let coeffs_e =
LEPoly.to_list e
|> List.map
(fun (_, l) ->
let l, c = LinExprSC.to_list l in c :: List.map snd l)
|> List.flatten in
let sum =
List.fold_left
(fun s c -> s +. Poly.Coeff.to_float c ** 2.)
0. coeffs_e in
sqrt (sqrt sum) in
if options.scale then List.map sqrt_norm scalarized
else List.map (fun _ -> 1.) scalarized in
let scalarized =
let scale s e =
let s = 1. /. s |> Poly.Coeff.of_float |> LinExprSC.const in
LEPoly.mult_scalar s e in
List.map2 scale scaling_factors scalarized in
let obj, obj_cst = match LEPoly.to_list obj with
| [] -> ([], []), 0.
| [m, c] when Monomial.(compare m one) = 0 ->
let le, c = LinExprSC.to_list c in
let v = List.map (fun (id, c) -> Ident.Map.find id var_idx, c) le in
(v, []), Poly.Coeff.to_float c
| _ -> raise Not_linear in
let monoms_scalarized =
let rec build_monoms ml el = match ml, el with
| _, [] -> []
| m :: ml, e :: el -> (Array.of_list m, e) :: build_monoms ml el
| [], e :: el ->
let h = LEPoly.is_homogeneous e in
let n = LEPoly.nb_vars e in
let d = (LEPoly.degree e + 1) / 2 in
let m = (if h then Monomial.list_eq else Monomial.list_le) n d in
(Array.of_list m, e) :: build_monoms [] el in
build_monoms options.monoms scalarized in
let square_monoms monoms =
let sz = Array.length monoms in
let m = ref Monomial.Map.empty in
for i = 0 to sz - 1 do
for j = 0 to i do
let mij = Monomial.mult monoms.(i) monoms.(j) in
let lm = try Monomial.Map.find mij !m with Not_found -> [] in
m := Monomial.Map.add mij ((i, j) :: lm) !m
done
done;
!m in
let rec refines monoms_e =
let monoms_e' =
List.map
(fun (m, e) ->
let l = Array.to_list m in
let m_e = List.map fst (LEPoly.to_list e) in
Array.of_list (NewtonPolytope.filter l m_e), e)
monoms_e in
let eq_lengths (m, _) (m', _) = Array.length m = Array.length m' in
if List.for_all2 eq_lengths monoms_e monoms_e' then monoms_e else
let collect_zeros zeros (monoms, e) =
let sq_monoms = square_monoms monoms in
let e = LEPoly.to_list e in
List.fold_left
(fun zeros (m, c) ->
if Monomial.Map.mem m sq_monoms then zeros else
match LinExprSC.is_var c with
| None -> zeros
| Some (id, _) -> Ident.Set.add id zeros)
zeros e in
let zeros = List.fold_left collect_zeros Ident.Set.empty monoms_e' in
if Ident.Set.is_empty zeros then monoms_e' else
let set_zeros e =
let set_zeros_le le =
let l, c = LinExprSC.to_list le in
let l =
List.filter (fun (id, _) -> not (Ident.Set.mem id zeros)) l in
LinExprSC.of_list l c in
LEPoly.to_list e
|> List.map (fun (m, e) -> m, set_zeros_le e)
|> LEPoly.of_list in
let tmp = List.map (fun (m, e) -> m, set_zeros e) monoms_e' in
refines tmp in
let monoms_scalarized = refines monoms_scalarized in
let build_cstr ei (monoms, e) =
let constraints =
let le_zero = LinExprSC.const Poly.Coeff.zero in
let rec match_polys l p1 p2 = match p1, p2 with
| [], [] -> l
| [], (_, c2) :: t2 -> match_polys ((le_zero, c2) :: l) [] t2
| (_, c1) :: t1, [] -> match_polys ((c1, []) :: l) t1 []
| (m1, c1) :: t1, (m2, c2) :: t2 ->
let cmp = Monomial.compare m1 m2 in
if cmp = 0 then match_polys ((c1, c2) :: l) t1 t2
else if cmp > 0 then match_polys ((le_zero, c2) :: l) p1 t2
else match_polys ((c1, []) :: l) t1 p2 in
let sq_monoms = Monomial.Map.bindings (square_monoms monoms) in
match_polys [] (LEPoly.to_list e) sq_monoms in
let constraints =
List.rev_map
(fun (le, lij) ->
let le, b = LinExprSC.to_list le in
let vect =
List.map
(fun (id, c) ->
Ident.Map.find id var_idx, Poly.Coeff.neg c)
le in
let mat = [ei, List.map (fun (i, j) -> i, j, 1.) lij] in
(vect, mat), b)
constraints in
monoms, constraints in
let monoms_cstrs = List.mapi build_cstr monoms_scalarized in
let obj =
if not (options.trace_obj && obj = ([], [])) then obj else
let neg_tr ei (monoms, _) =
ei, List.mapi (fun i _ -> i, i, -1.) (Array.to_list monoms) in
[], List.mapi neg_tr monoms_cstrs in
let paddings, cstrs =
let perr = if false then 0. else
let bl = List.map (fun (_, c) -> List.map snd c) monoms_cstrs
|> List.flatten |> List.map Poly.Coeff.to_float in
Sdp.pfeas_stop_crit ?options:sdp_options ?solver bl in
if options.verbose > 0 then Format.printf "perr = %g@." perr;
let monoms_cstrs_pad =
let rec aux mc p = match mc, p with
| [], _ -> []
| mc :: mcl, [] -> (mc, options.pad) :: aux mcl []
| mc :: mcl, p :: pl -> (mc, p) :: aux mcl pl in
aux monoms_cstrs options.pad_list in
let pad_cstrs ((monoms, constraints), pad) =
let pad = float_of_int (Array.length monoms) *. (pad *. perr) in
if options.verbose > 1 then Format.printf "pad = %g@." pad;
let has_diag mat =
let diag (i, j, _) = i = j in
List.exists (fun (_, m) -> List.exists diag m) mat in
pad,
List.map
(fun ((vect, mat), b) ->
let b = if has_diag mat then Poly.Coeff.(b - of_float pad) else b in
vect, mat, b, b)
constraints in
List.split (List.map pad_cstrs monoms_cstrs_pad) in
let cstrs = List.flatten cstrs in
let module PreSdp = PreSdp.Make (Poly.Coeff) in
let ret, (pobj, dobj), (res_x, res_X), dualize_details, tsolver =
if options.dualize then
let (ret, (pobj, dobj), (res_x, res_X), details), tsolver =
Utils.profile (fun () ->
Dualize.solve_ext_sparse_details ?options:sdp_options ?solver obj cstrs []
) in
ret, (pobj, dobj), (res_x, res_X), Some details, tsolver
else
let (ret, (pobj, dobj), (res_x, res_X, _, _)), tsolver =
Utils.profile (fun () ->
PreSdp.solve_ext_sparse ?options:sdp_options ?solver obj cstrs []
) in
ret, (pobj, dobj), (res_x, res_X), None, tsolver in
if options.verbose > 2 then
Format.printf "time for solver: %.3fs@." tsolver;
let obj = let f o = obj_sign *. (o +. obj_cst) in f pobj, f dobj in
if not (SdpRet.is_success ret) then
ret, obj, (Ident.Map.empty, None), []
else
let module IntMap =
Map.Make (struct type t = int let compare = compare end) in
let vars =
let res_x =
IntMap.(List.fold_left (fun m (i, c) -> add i c m) empty res_x) in
Ident.Map.map
(fun i -> try IntMap.find i res_x with Not_found -> P.Coeff.zero)
var_idx in
let details = match dualize_details with
| None -> None
| Some (v, m, dv) ->
let tr =
let v =
IntMap.(List.fold_left (fun m (i, id) -> add i id m) empty v) in
Ident.Map.fold
(fun id i m ->
try Ident.Map.add (IntMap.find i v) id m with Not_found -> m)
var_idx Ident.Map.empty in
let m =
let m =
IntMap.(List.fold_left (fun m (i, b) -> add i b m) empty m) in
let dummy = Ident.create "_dummy_" in
List.mapi
(fun i e ->
let b =
try IntMap.find i m
with Not_found -> Array.make_matrix 0 0 dummy in
let sz = Array.length b in
for i = 0 to sz - 1 do
for j = 0 to i do
try b.(i).(j) <- Ident.Map.find b.(i).(j) tr
with Not_found -> ()
done
done;
e, b)
el in
let repl = Ident.Map.(bindings (map Dualize.ScalarLinExpr.var tr)) in
let tr_dv d = match d with
| Dualize.DV _ -> d
| Dualize.DVexpr le ->
Dualize.(DVexpr (ScalarLinExpr.replace le repl)) in
let dv =
Ident.Map.fold
(fun i d m ->
let i = try Ident.Map.find i tr with Not_found -> i in
Ident.Map.add i (tr_dv d) m)
dv Ident.Map.empty in
Some (dv, m) in
let witnesses =
let rec combine monoms res_X = match monoms, res_X with
| [], [] -> []
| [], _ -> assert false
| m :: q, _ when Array.length m = 0 ->
(m, Array.make_matrix 0 0 0.) :: combine q res_X
| m :: q, m' :: q' -> (m, m') :: combine q q'
| _ -> assert false in
combine (List.map fst monoms_cstrs) (List.map snd res_X) in
List.iter2
(fun pad (_, q) ->
let sz = Array.length q in
for i = 0 to sz - 1 do q.(i).(i) <- q.(i).(i) +. pad done)
paddings witnesses;
List.iter2
(fun s (_, q) ->
let sz = Array.length q in
for i = 0 to sz - 1 do
for j = 0 to sz - 1 do
q.(i).(j) <- s *. q.(i).(j)
done
done)
scaling_factors witnesses;
ret, obj, (vars, details), witnesses
let value_poly e (m, _) =
let rec aux = function
| Const p -> p
| Var (Vscalar id) -> Poly.const (Ident.Map.find id m)
| Var (Vpoly p) ->
List.map (fun (mon, id) -> mon, Ident.Map.find id m) p.poly
|> Poly.of_list
| Mult_scalar (c, e) -> Poly.mult_scalar c (aux e)
| Add (e1, e2) -> Poly.add (aux e1) (aux e2)
| Sub (e1, e2) -> Poly.sub (aux e1) (aux e2)
| Mult (e1, e2) -> Poly.mult (aux e1) (aux e2)
| Power (e, d) -> Poly.power (aux e) d
| Compose (e, el) -> Poly.compose (aux e) (List.map aux el)
| Derive (e, i) -> Poly.derive (aux e) i in
aux e
let value e m =
match Poly.is_const (value_poly e m) with
| None -> raise Dimension_error
| Some c -> c
let check ?options:options ?values:values e (v, q) =
let options = match options with Some o -> o | None -> default in
let values = match values with Some (v, _) -> v | None -> Ident.Map.empty in
let module PQ = Polynomial.Q in let module M = Monomial in
let rec scalarize = function
| Const p ->
Poly.to_list p
|> List.map (fun (m, c) -> m, Poly.Coeff.to_q c)
|> PQ.of_list
| Var (Vscalar id) ->
PQ.const (Poly.Coeff.to_q (Ident.Map.find id values))
| Var (Vpoly p) ->
List.map (fun (m, id) -> m, Ident.Map.find id values) p.poly
|> List.map (fun (m, c) -> m, Poly.Coeff.to_q c)
|> PQ.of_list
| Mult_scalar (c, e) ->
PQ.mult_scalar (Poly.Coeff.to_q c) (scalarize e)
| Add (e1, e2) -> PQ.add (scalarize e1) (scalarize e2)
| Sub (e1, e2) -> PQ.sub (scalarize e1) (scalarize e2)
| Mult (e1, e2) -> PQ.mult (scalarize e1) (scalarize e2)
| Power (e, d) -> PQ.power (scalarize e) d
| Compose (e, el) ->
PQ.compose (scalarize e) (List.map scalarize el)
| Derive (e, i) -> PQ.derive (scalarize e) i in
let (b, r), _time = Utils.profile (fun () ->
let p = scalarize e in
let check_base =
let s = ref M.Set.empty in
let sz = Array.length v in
for i = 0 to sz - 1 do
for j = 0 to i do
s := M.Set.add (M.mult v.(i) v.(j)) !s
done
done;
List.for_all (fun (m, _) -> M.Set.mem m !s) (PQ.to_list p) in
if not check_base then false, Q.zero else
let p' =
let p' = ref [] in
let sz = Array.length v in
for i = 0 to sz - 1 do
for j = 0 to sz - 1 do
p' := (M.mult v.(i) v.(j), Scalar.Q.of_float q.(i).(j)) :: !p'
done
done;
PQ.of_list !p' in
let r =
let p'' =
PQ.merge
(fun _ c c' ->
match c, c' with
| None, None -> None
| Some c, None | None, Some c -> Some (Q.abs c)
| Some c, Some c' -> Some (Q.(abs (sub c c')))) p p' in
PQ.fold (fun _ c m -> Q.max c m) p'' Q.zero in
true, r) in
if not b then false else
let () = if options.verbose > 0 then Format.printf "r = %g@." (Utils.float_of_q r) in
let qpmr, _time = Utils.profile (fun () ->
let itv f =
let q = Q.of_float f in
let l, _ = Utils.itv_float_of_q (Q.sub q r) in
let _, u = Utils.itv_float_of_q (Q.add q r) in
l, u in
Array.map (Array.map itv) q) in
let res, _time = Utils.profile (fun () -> Posdef.check_itv qpmr) in
res
let solve ?options ?solver obj el =
let (ret, obj, vals, wits), tsolve =
Utils.profile (fun () -> solve ?options ?solver obj el) in
let options = match options with Some o -> o | None -> default in
if options.verbose > 2 then
Format.printf "time for solve: %.3fs@." tsolve;
if not (SdpRet.is_success ret) then ret, obj, vals, wits else
let res, tcheck =
Utils.profile (fun () ->
let check_repl e wit = check ~options ~values:vals e wit in
if List.for_all2 check_repl el wits then SdpRet.Success, obj, vals, wits
else SdpRet.PartialSuccess, obj, vals, wits
) in
if options.verbose > 2 then
Format.printf "time for check: %.3fs@." tcheck;
res
let check_round ?options:options ?values:values el wl =
let _options = options in
let orig_vals, values =
match values with Some (ov, v) -> ov, v | None -> Ident.Map.empty, None in
let values = match values with
| Some (_d, l) when el = List.map fst l -> values
| _ -> None in
match values with
| None -> None
| Some (dv, el) ->
let module PQ = Polynomial.Q in let module M = Monomial in
let try_rounding den =
let denf = PQ.Coeff.to_float den in
let round f =
let s, af = if f >= 0. then 1, f else -1, -.f in
let i = s * int_of_float (denf *. af +. 0.5) in
PQ.Coeff.(of_int i / den) in
let dv =
Ident.Map.map
(fun d -> match d with
| Dualize.DVexpr le -> Dualize.DVexpr le
| Dualize.DV f -> Dualize.DV (round f))
dv in
let get id = match Ident.Map.find id dv with
| Dualize.DV q -> q | Dualize.DVexpr _ -> assert false in
let values =
Ident.Map.map
(function
| Dualize.DV q -> q
| Dualize.DVexpr le ->
let l, c = Dualize.ScalarLinExpr.to_list le in
let l = List.map (fun (id, c) -> id, Dualize.Scalar.to_q c) l in
let c = Dualize.Scalar.to_q c in
List.fold_left (fun r (id, c) -> PQ.Coeff.(r + c * get id)) c l)
dv in
let wl =
List.rev_map2
(fun (_, m) (z, _) ->
let sz = Array.length m in
let a = Array.make_matrix sz sz PQ.Coeff.zero in
for i = 0 to sz - 1 do
for j = 0 to i do
let q =
try Ident.Map.find m.(i).(j) values
with Not_found -> PQ.Coeff.zero in
a.(i).(j) <- q; a.(j).(i) <- q
done
done;
if not (Posdef.check_PSD a) then raise Exit;
z, a)
(List.rev el) (List.rev wl) in
values, wl in
let rounding =
let dens =
let rec range n m = if n > m then [] else n :: range (n + 1) m in
List.map Q.of_int (range 1 31)
@ List.map Q.(mul_2exp one) (range 5 66) in
let rec find_rounding = function
| [] -> None
| den :: l ->
try Some (try_rounding den)
with Exit -> find_rounding l in
find_rounding dens in
let check_eq values e (z, q) =
let get id =
try Ident.Map.find id values
with Not_found -> Poly.Coeff.to_q (Ident.Map.find id orig_vals) in
let rec cpt = function
| Const p ->
Poly.to_list p
|> List.map (fun (m, c) -> m, Poly.Coeff.to_q c)
|> PQ.of_list
| Var (Vscalar id) -> PQ.const (get id)
| Var (Vpoly p) ->
List.map (fun (m, id) -> m, get id) p.poly
|> PQ.of_list
| Mult_scalar (c, e) ->
PQ.mult_scalar (Poly.Coeff.to_q c) (cpt e)
| Add (e1, e2) -> PQ.add (cpt e1) (cpt e2)
| Sub (e1, e2) -> PQ.sub (cpt e1) (cpt e2)
| Mult (e1, e2) -> PQ.mult (cpt e1) (cpt e2)
| Power (e, d) -> PQ.power (cpt e) d
| Compose (e, el) ->
PQ.compose (cpt e) (List.map cpt el)
| Derive (e, i) -> PQ.derive (cpt e) i in
let ztqz z q =
let sz = Array.length q in
let p = ref PQ.zero in
for i = 0 to sz - 1 do
for j = 0 to sz - 1 do
let m = PQ.(monomial z.(i) * const q.(i).(j) * monomial z.(j)) in
p := PQ.add !p m
done
done;
!p in
let p = cpt e in
let p' = ztqz z q in
PQ.compare p p' = 0 in
match rounding with
| None -> None
| Some (values, wl) ->
if List.for_all2 (fun (e, _) w -> check_eq values e w) el wl then
let values =
Ident.Map.fold
(fun id c m -> Ident.Map.add id (Poly.Coeff.of_q c) m)
values orig_vals in
Some ((values, None), wl)
else
None
let ( !! ) = const
let ( ?? ) i = const (Poly.( ?? ) i)
let ( ! ) = scalar
let ( *. ) = mult_scalar
let ( ~- ) = sub (const Poly.zero)
let ( + ) = add
let ( - ) = sub
let ( * ) = mult
let ( / ) e c = Mult_scalar (Poly.Coeff.inv c, e)
let ( /. ) c1 c2 = const (Poly.( /. ) c1 c2)
let ( ** ) = power
let ( >= ) e1 e2 = e1 - e2
let ( <= ) e1 e2 = e2 - e1
end
module Q = Make (Polynomial.Q)
module Float = Make (Polynomial.Float)