Source file owl_base_complex.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
# 1 "src/base/maths/owl_base_complex.ml"
(*
 * OWL - an OCaml numerical library for scientific computing
 * Copyright (c) 2016-2018 Liang Wang <liang.wang@cl.cam.ac.uk>
 *)


include Complex


let abs = norm


let abs2 = norm2


let logabs x =
  let r = abs_float x.re in
  let i = abs_float x.im in
  let m, u =
    if r >= i then r, i /. r
    else i, r /. i
  in
  Pervasives.(log m) +. 0.5 *. (log1p (u *. u))


let add_re x a = { re = x.re +. a; im = x.im }


let add_im x a = { re = x.re; im = x.im +. a }


let sub_re x a = { re = x.re -. a; im = x.im }


let sub_im x a = { re = x.re; im = x.im -. a }


let mul_re x a = { re = x.re *. a; im = x.im *. a }


let mul_im x a = { re = -.a *. x.im; im = a *. x.re }


let div_re x a = { re = x.re /. a; im = x.im /. a }


let div_im x a = { re = x.im /. a; im = -.x.re /. a }


let sin x =
  if x.im = 0. then { re = sin x.re; im = 0. }
  else { re = (sin x.re) *. (cosh x.im) ; im = (cos x.re) *. (sinh x.im) }


let cos x =
  let open Pervasives in
  if x.im = 0. then { re = cos x.re; im = 0. }
  else { re = (cos x.re) *. (cosh x.im) ; im = (sin x.re) *. (sinh (-.x.im)) }


let tan x =
  let open Pervasives in
  if abs_float x.im < 1. then (
    let d = ((cos x.re) ** 2.) +. ((sinh x.im) ** 2.) in
    { re = 0.5 *. (sin (2. *. x.re)) /. d; im = 0.5 *. (sinh (2. *. x.im)) /. d }
  )
  else (
    let d = ((cos x.re) ** 2.) +. ((sinh x.im) ** 2.) in
    let f = 1. +. (((cos x.re) /. (sinh x.im)) ** 2.) in
    { re = 0.5 *. (sin (2. *. x.re)) /. d; im = 1. /. ((tanh x.im) *. f) }
  )


let cot x = inv (tan x)


let sec x = inv (cos x)


let csc x = inv (sin x)


let sinh x =
  let open Pervasives in
  { re = (sinh x.re) *. (cos x.im); im = (cosh x.re) *. (sin x.im) }


let cosh x =
  let open Pervasives in
  { re = (cosh x.re) *. (cos x.im); im = (sinh x.re) *. (sin x.im) }


let tanh x =
  let open Pervasives in
  if abs_float x.re < 1. then (
    let d = ((cos x.im) ** 2.) +. ((sinh x.re) ** 2.) in
    { re = (sinh x.re) *. (cosh x.re) /. d; im = 0.5 *. (sin (2. *. x.im)) /. d }
  )
  else (
    let d = ((cos x.im) ** 2.) +. ((sinh x.re) ** 2.) in
    let f = 1. +. (((cos x.re) /. (sinh x.im)) ** 2.) in
    { re = 1. /. ((tanh x.re) *. f); im = 0.5 *. (sin (2. *. x.im)) /. d }
  )


let sech x = inv (cosh x)


let csch x = inv (sinh x)


let coth x = inv (tanh x)


let asin x =
  let open Pervasives in
  if x.im = 0. then { re = asin x.re; im = 0. }
  else (
    let x0 = abs_float x.re in
    let y0 = abs_float x.im in
    let r = hypot (x0 +. 1.) y0 in
    let s = hypot (x0 -. 1.) y0 in
    let a = 0.5 *. (r +. s) in
    let b = x0 /. a in
    let y2 = y0 *. y0 in

    let a_crossover = 1.5000 in
    let b_crossover = 0.6417 in
    let re = ref 0. in
    let im = ref 0. in

    if b <= b_crossover then re := asin b
    else (
      if x0 <= 1. then (
        let d = 0.5 *. (a +. x0) *. (y2 /. (r +. x0 +. 1.) +. (s +. (1. -. x0))) in
        re := atan (x0 /. sqrt d)
      )
      else (
        let apx = a +. x0 in
        let d = 0.5 *. (apx /. (r +. x0 +. 1.) +. apx /. (s +. (x0 -. 1.))) in
        re := atan (x0 /. (y0 *. sqrt d));
      )
    );

    if a <= a_crossover then (
      let am1 =
        if x0 < 1. then
          0.5 *. (y2 /. (r +. (x0 +. 1.)) +. y2 /. (s +. (1. -. x0)))
        else
          0.5 *. (y2 /. (r +. (x0 +. 1.)) +. (s +. (x0 -. 1.)))
      in
      im := log1p (am1 +. sqrt (am1 *. (a +. 1.)))
    )
    else (
      im := log (a +. sqrt (a *. a -. 1.))
    );

    let re = if x.re >= 0. then !re else -.(!re) in
    let im = if x.im >= 0. then !im else -.(!im) in
    { re; im }
  )


let acos x =
  let open Pervasives in
  if x.im = 0. then { re = acos x.re; im = 0. }
  else (
    let x0 = abs_float x.re in
    let y0 = abs_float x.im in
    let r = hypot (x0 +. 1.) y0 in
    let s = hypot (x0 -. 1.) y0 in
    let a = 0.5 *. (r +. s) in
    let b = x0 /. a in
    let y2 = y0 *. y0 in

    let a_crossover = 1.5000 in
    let b_crossover = 0.6417 in
    let re = ref 0. in
    let im = ref 0. in

    if b <= b_crossover then re := acos b
    else (
      if x0 <= 1. then (
        let d = 0.5 *. (a +. x0) *. (y2 /. (r +. x0 +. 1.) +. (s +. (1. -. x0))) in
        re := atan (sqrt d /. x0)
      )
      else (
        let apx = a +. x0 in
        let d = 0.5 *. (apx /. (r +. x0 +. 1.) +. apx /. (s +. (x0 -. 1.))) in
        re := atan ((y0 *. sqrt d) /. x0)
      )
    );

    if a <= a_crossover then (
      let am1 =
        if x0 < 1. then
          0.5 *. (y2 /. (r +. (x0 +. 1.)) +. y2 /. (s +. (1. -. x0)))
        else
          0.5 *. (y2 /. (r +. (x0 +. 1.)) +. (s +. (x0 -. 1.)))
      in
      im := log1p (am1 +. sqrt (am1 *. (a +. 1.)))
    )
    else (
      im := log (a +. sqrt (a *. a -. 1.))
    );

    let re = if x.re >= 0. then !re else Owl_const.pi -. !re in
    let im = if x.im >= 0. then -.(!im) else !im in
    { re; im }
  )


let atan x =
  let open Pervasives in
  if x.im = 0. then { re = atan x.re; im = 0. }
  else (
    let r = hypot x.re x.im in
    let u = 2. *. x.im /. (1. +. r *. r) in
    let im = ref 0. in

    if abs_float u < 0.1 then
      im := 0.25 *. ((log1p u) -. (log1p (-.u)))
    else (
      let a = hypot x.re (x.im +. 1.) in
      let b = hypot x.re (x.im -. 1.) in
      im := 0.5 *. log (a /. b)
    );

    if x.re = 0. then (
      if x.im > 1. then { re = Owl_const.pi_2; im = !im }
      else if x.im < -1. then { re = -.Owl_const.pi_2; im = !im }
      else { re = 0.; im = !im }
    )
    else { re = 0.5 *. (atan2 (2. *. r) ((1. +. r) *. (1. -. r))); im = !im }
  )


let asec x = acos (inv x)


let acsc x = asin (inv x)


let acot x =
  if x.re = 0. && x.im = 0. then { re = Owl_const.pi_2; im = 0. }
  else atan (inv x)


let asinh x = mul_im (mul_im x 1. |> asin) (-1.)


let acosh x =
  let y = acos x in
  let a = if y.im > 0. then (-1.) else 1. in
  mul_im y a


let atanh x =
  if x.im = 0. then { re = Owl_base_maths.atanh x.re; im = 0. }
  else (
    let y = mul_im x 1. in
    mul_im (atan y) (-1.)
  )


let asech x = acosh (inv x)


let acsch x = asinh (inv x)


let acoth x = atanh (inv x)


let phase x = atan2 x.im x.re


let rect r phi =
  let re = r *. Pervasives.cos phi in
  let im = r *. Pervasives.sin phi in
  { re; im }


(* Comparison functions *)

let equal x y = (x.re = y.re) && (x.im = y.im)


let not_equal x y = (x.re <> y.re) || (x.im <> y.im)


let less x y =
  let abs_x = abs x in
  let abs_y = abs y in
  if abs_x < abs_y then true
  else if abs_x > abs_y then false
  else arg x < arg y


let greater x y =
  let abs_x = abs x in
  let abs_y = abs y in
  if abs_x > abs_y then true
  else if abs_x < abs_y then false
  else arg x > arg y


let less_equal x y = not (greater x y)


let greater_equal x y = not (less x y)


(* Helper functions *)

let complex re im = { re; im }


let of_tuple x =
  let re, im = x in
  {re; im}


let to_tuple x = x.re, x.im


let is_nan x = x.re = nan || x.im = nan


let is_inf x =
  x.re = infinity || x.re = neg_infinity ||
  x.im = infinity || x.im = neg_infinity



(* ends here *)