Source file indexed_monad_plus.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
module type LAWS_MONOID = sig
type ('a, 'index) t
include Indexed_monad.LAWS with type ('a, 'index) t := ('a, 'index) t
val monad_plus_monoid_1 : unit -> (('a, 'index) t, ('a, 'index) t) Law.t
val monad_plus_monoid_2 : unit -> (('a, 'index) t, ('a, 'index) t) Law.t
val monad_plus_monoid_3 :
unit
-> ( ('a, 'index) t
, ('a, 'index) t -> ('a, 'index) t -> ('a, 'index) t )
Law.t
end
module type LAWS_LEFT_ABSORPTION = sig
type ('a, 'index) t
include Indexed_monad.LAWS with type ('a, 'index) t := ('a, 'index) t
val monad_plus_left_absorb_1 :
unit -> ('a -> ('b, 'index) t, ('b, 'index) t) Law.t
end
module type LAWS_LEFT_DISTRIBUTIVITY = sig
type ('a, 'index) t
include Indexed_monad.LAWS with type ('a, 'index) t := ('a, 'index) t
val monad_plus_left_distrib_1 :
unit
-> ( ('a, 'index) t
, ('a, 'index) t -> ('a -> ('b, 'index) t) -> ('b, 'index) t )
Law.t
end
module type LAWS_LEFT_CATCH = sig
type ('a, 'index) t
include Indexed_monad.LAWS with type ('a, 'index) t := ('a, 'index) t
val monad_plus_left_catch_1 :
unit -> ('a, ('a, 'index) t -> ('a, 'index) t) Law.t
end
module For_monoidal (M : Preface_specs.INDEXED_MONAD_PLUS) :
LAWS_MONOID with type ('a, 'index) t := ('a, 'index) M.t = struct
open Law
include Indexed_monad.For (M)
let monad_plus_monoid_1 () =
let lhs = M.(combine neutral)
and rhs x = x in
law ("neutral <|> x" =~ lhs) ("x" =~ rhs)
;;
let monad_plus_monoid_2 () =
let lhs x = M.(combine x neutral)
and rhs x = x in
law ("x <|> neutral" =~ lhs) ("x" =~ rhs)
;;
let monad_plus_monoid_3 () =
let lhs a b c = M.(Infix.(a <|> b) <|> c)
and rhs a b c = M.(a <|> Infix.(b <|> c)) in
law ("(a <|> b) <|> c" =~ lhs) ("a <|> (b <|> c)" =~ rhs)
;;
end
module For_left_absorption (M : Preface_specs.INDEXED_MONAD_PLUS) :
LAWS_LEFT_ABSORPTION with type ('a, 'index) t := ('a, 'index) M.t = struct
include Indexed_monad.For (M)
open Law
let monad_plus_left_absorb_1 () =
let lhs f = M.(neutral >>= f)
and rhs _ = M.neutral in
law ("neutral >>= f" =~ lhs) ("neutral" =~ rhs)
;;
end
module For_left_distributivity (M : Preface_specs.INDEXED_MONAD_PLUS) :
LAWS_LEFT_DISTRIBUTIVITY with type ('a, 'index) t := ('a, 'index) M.t = struct
include Indexed_monad.For (M)
open Law
let monad_plus_left_distrib_1 () =
let lhs a b f = M.(a <|> b >>= f)
and rhs a b f = M.(a >>= f <|> (b >>= f)) in
law ("(a <|> b) >>= f" =~ lhs) ("(a >>= f) <|> (b >>= f)" =~ rhs)
;;
end
module For_left_catch (M : Preface_specs.INDEXED_MONAD_PLUS) :
LAWS_LEFT_CATCH with type ('a, 'index) t := ('a, 'index) M.t = struct
include Indexed_monad.For (M)
open Law
let monad_plus_left_catch_1 () =
let lhs a b = M.(return a <|> b)
and rhs a _ = M.(return a) in
law ("(return a) <|> b" =~ lhs) ("return a" =~ rhs)
;;
end