Source file calibration.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
let () = Wrap_utils.init ();;
let ns = Py.import "sklearn.calibration"
module BaseEstimator = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
Py.Module.get_function_with_keywords ns "BaseEstimator"
[||]
[]
let get_params ?deep self =
Py.Module.get_function_with_keywords self "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
let set_params ?params self =
Py.Module.get_function_with_keywords self "set_params"
[||]
(match params with None -> [] | Some x -> x)
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module CalibratedClassifierCV = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create ?base_estimator ?method_ ?cv () =
Py.Module.get_function_with_keywords ns "CalibratedClassifierCV"
[||]
(Wrap_utils.keyword_args [("base_estimator", base_estimator); ("method", Wrap_utils.Option.map method_ (function
| `Sigmoid -> Py.String.of_string "sigmoid"
| `Isotonic -> Py.String.of_string "isotonic"
)); ("cv", Wrap_utils.Option.map cv (function
| `Int x -> Py.Int.of_int x
| `CrossValGenerator x -> Wrap_utils.id x
| `Ndarray x -> Ndarray.to_pyobject x
| `Prefit -> Py.String.of_string "prefit"
))])
let fit ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords self "fit"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
let get_params ?deep self =
Py.Module.get_function_with_keywords self "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
let predict ~x self =
Py.Module.get_function_with_keywords self "predict"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Ndarray.to_pyobject))])
|> Ndarray.of_pyobject
let predict_proba ~x self =
Py.Module.get_function_with_keywords self "predict_proba"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Ndarray.to_pyobject))])
|> Ndarray.of_pyobject
let score ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords self "score"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
|> Py.Float.to_float
let set_params ?params self =
Py.Module.get_function_with_keywords self "set_params"
[||]
(match params with None -> [] | Some x -> x)
let classes_ self =
match Py.Object.get_attr_string self "classes_" with
| None -> raise (Wrap_utils.Attribute_not_found "classes_")
| Some x -> Ndarray.of_pyobject x
let calibrated_classifiers_ self =
match Py.Object.get_attr_string self "calibrated_classifiers_" with
| None -> raise (Wrap_utils.Attribute_not_found "calibrated_classifiers_")
| Some x -> Wrap_utils.id x
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module ClassifierMixin = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
Py.Module.get_function_with_keywords ns "ClassifierMixin"
[||]
[]
let score ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords self "score"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
|> Py.Float.to_float
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module IsotonicRegression = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create ?y_min ?y_max ?increasing ?out_of_bounds () =
Py.Module.get_function_with_keywords ns "IsotonicRegression"
[||]
(Wrap_utils.keyword_args [("y_min", y_min); ("y_max", y_max); ("increasing", Wrap_utils.Option.map increasing (function
| `Bool x -> Py.Bool.of_bool x
| `String x -> Py.String.of_string x
)); ("out_of_bounds", Wrap_utils.Option.map out_of_bounds Py.String.of_string)])
let fit ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords self "fit"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
let fit_transform ?y ?fit_params ~x self =
Py.Module.get_function_with_keywords self "fit_transform"
[||]
(List.rev_append (Wrap_utils.keyword_args [("y", Wrap_utils.Option.map y Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject))]) (match fit_params with None -> [] | Some x -> x))
|> Ndarray.of_pyobject
let get_params ?deep self =
Py.Module.get_function_with_keywords self "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
let predict ~t self =
Py.Module.get_function_with_keywords self "predict"
[||]
(Wrap_utils.keyword_args [("T", Some(t |> Ndarray.to_pyobject))])
|> Ndarray.of_pyobject
let score ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords self "score"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
|> Py.Float.to_float
let set_params ?params self =
Py.Module.get_function_with_keywords self "set_params"
[||]
(match params with None -> [] | Some x -> x)
let transform ~t self =
Py.Module.get_function_with_keywords self "transform"
[||]
(Wrap_utils.keyword_args [("T", Some(t |> Ndarray.to_pyobject))])
|> Ndarray.of_pyobject
let x_min_ self =
match Py.Object.get_attr_string self "X_min_" with
| None -> raise (Wrap_utils.Attribute_not_found "X_min_")
| Some x -> Py.Float.to_float x
let x_max_ self =
match Py.Object.get_attr_string self "X_max_" with
| None -> raise (Wrap_utils.Attribute_not_found "X_max_")
| Some x -> Py.Float.to_float x
let f_ self =
match Py.Object.get_attr_string self "f_" with
| None -> raise (Wrap_utils.Attribute_not_found "f_")
| Some x -> Wrap_utils.id x
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module LabelBinarizer = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create ?neg_label ?pos_label ?sparse_output () =
Py.Module.get_function_with_keywords ns "LabelBinarizer"
[||]
(Wrap_utils.keyword_args [("neg_label", Wrap_utils.Option.map neg_label Py.Int.of_int); ("pos_label", Wrap_utils.Option.map pos_label Py.Int.of_int); ("sparse_output", Wrap_utils.Option.map sparse_output Py.Bool.of_bool)])
let fit ~y self =
Py.Module.get_function_with_keywords self "fit"
[||]
(Wrap_utils.keyword_args [("y", Some(y |> Ndarray.to_pyobject))])
let fit_transform ~y self =
Py.Module.get_function_with_keywords self "fit_transform"
[||]
(Wrap_utils.keyword_args [("y", Some(y |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `SparseMatrix x -> Csr_matrix.to_pyobject x
)))])
|> Ndarray.of_pyobject
let get_params ?deep self =
Py.Module.get_function_with_keywords self "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
let inverse_transform ?threshold ~y self =
Py.Module.get_function_with_keywords self "inverse_transform"
[||]
(Wrap_utils.keyword_args [("threshold", Wrap_utils.Option.map threshold (function
| `Float x -> Py.Float.of_float x
| `None -> Py.String.of_string "None"
)); ("Y", Some(y |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `PyObject x -> Wrap_utils.id x
)))])
let set_params ?params self =
Py.Module.get_function_with_keywords self "set_params"
[||]
(match params with None -> [] | Some x -> x)
let transform ~y self =
Py.Module.get_function_with_keywords self "transform"
[||]
(Wrap_utils.keyword_args [("y", Some(y |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `SparseMatrix x -> Csr_matrix.to_pyobject x
)))])
|> Ndarray.of_pyobject
let classes_ self =
match Py.Object.get_attr_string self "classes_" with
| None -> raise (Wrap_utils.Attribute_not_found "classes_")
| Some x -> Ndarray.of_pyobject x
let y_type_ self =
match Py.Object.get_attr_string self "y_type_" with
| None -> raise (Wrap_utils.Attribute_not_found "y_type_")
| Some x -> Py.String.to_string x
let sparse_input_ self =
match Py.Object.get_attr_string self "sparse_input_" with
| None -> raise (Wrap_utils.Attribute_not_found "sparse_input_")
| Some x -> Py.Bool.to_bool x
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module LabelEncoder = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
Py.Module.get_function_with_keywords ns "LabelEncoder"
[||]
[]
let fit ~y self =
Py.Module.get_function_with_keywords self "fit"
[||]
(Wrap_utils.keyword_args [("y", Some(y |> Ndarray.to_pyobject))])
let fit_transform ~y self =
Py.Module.get_function_with_keywords self "fit_transform"
[||]
(Wrap_utils.keyword_args [("y", Some(y |> Ndarray.to_pyobject))])
|> Ndarray.of_pyobject
let get_params ?deep self =
Py.Module.get_function_with_keywords self "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
let inverse_transform ~y self =
Py.Module.get_function_with_keywords self "inverse_transform"
[||]
(Wrap_utils.keyword_args [("y", Some(y |> Ndarray.to_pyobject))])
|> Ndarray.of_pyobject
let set_params ?params self =
Py.Module.get_function_with_keywords self "set_params"
[||]
(match params with None -> [] | Some x -> x)
let transform ~y self =
Py.Module.get_function_with_keywords self "transform"
[||]
(Wrap_utils.keyword_args [("y", Some(y |> Ndarray.to_pyobject))])
|> Ndarray.of_pyobject
let classes_ self =
match Py.Object.get_attr_string self "classes_" with
| None -> raise (Wrap_utils.Attribute_not_found "classes_")
| Some x -> Ndarray.of_pyobject x
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module LinearSVC = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create ?penalty ?loss ?dual ?tol ?c ?multi_class ?fit_intercept ?intercept_scaling ?class_weight ?verbose ?random_state ?max_iter () =
Py.Module.get_function_with_keywords ns "LinearSVC"
[||]
(Wrap_utils.keyword_args [("penalty", Wrap_utils.Option.map penalty (function
| `L1 -> Py.String.of_string "l1"
| `L2 -> Py.String.of_string "l2"
)); ("loss", Wrap_utils.Option.map loss (function
| `Hinge -> Py.String.of_string "hinge"
| `Squared_hinge -> Py.String.of_string "squared_hinge"
)); ("dual", Wrap_utils.Option.map dual Py.Bool.of_bool); ("tol", Wrap_utils.Option.map tol Py.Float.of_float); ("C", Wrap_utils.Option.map c Py.Float.of_float); ("multi_class", Wrap_utils.Option.map multi_class (function
| `Ovr -> Py.String.of_string "ovr"
| `Crammer_singer -> Py.String.of_string "crammer_singer"
)); ("fit_intercept", Wrap_utils.Option.map fit_intercept Py.Bool.of_bool); ("intercept_scaling", Wrap_utils.Option.map intercept_scaling Py.Float.of_float); ("class_weight", Wrap_utils.Option.map class_weight (function
| `DictIntToFloat x -> (Py.Dict.of_bindings_map Py.Int.of_int Py.Float.of_float) x
| `Balanced -> Py.String.of_string "balanced"
)); ("verbose", Wrap_utils.Option.map verbose Py.Int.of_int); ("random_state", Wrap_utils.Option.map random_state (function
| `Int x -> Py.Int.of_int x
| `RandomState x -> Wrap_utils.id x
| `None -> Py.String.of_string "None"
)); ("max_iter", Wrap_utils.Option.map max_iter Py.Int.of_int)])
let decision_function ~x self =
Py.Module.get_function_with_keywords self "decision_function"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `SparseMatrix x -> Csr_matrix.to_pyobject x
)))])
|> Ndarray.of_pyobject
let densify self =
Py.Module.get_function_with_keywords self "densify"
[||]
[]
let fit ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords self "fit"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `SparseMatrix x -> Csr_matrix.to_pyobject x
))); ("y", Some(y |> Ndarray.to_pyobject))])
let get_params ?deep self =
Py.Module.get_function_with_keywords self "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
let predict ~x self =
Py.Module.get_function_with_keywords self "predict"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `SparseMatrix x -> Csr_matrix.to_pyobject x
)))])
|> Ndarray.of_pyobject
let score ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords self "score"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
|> Py.Float.to_float
let set_params ?params self =
Py.Module.get_function_with_keywords self "set_params"
[||]
(match params with None -> [] | Some x -> x)
let sparsify self =
Py.Module.get_function_with_keywords self "sparsify"
[||]
[]
let coef_ self =
match Py.Object.get_attr_string self "coef_" with
| None -> raise (Wrap_utils.Attribute_not_found "coef_")
| Some x -> Ndarray.of_pyobject x
let intercept_ self =
match Py.Object.get_attr_string self "intercept_" with
| None -> raise (Wrap_utils.Attribute_not_found "intercept_")
| Some x -> Ndarray.of_pyobject x
let classes_ self =
match Py.Object.get_attr_string self "classes_" with
| None -> raise (Wrap_utils.Attribute_not_found "classes_")
| Some x -> Ndarray.of_pyobject x
let n_iter_ self =
match Py.Object.get_attr_string self "n_iter_" with
| None -> raise (Wrap_utils.Attribute_not_found "n_iter_")
| Some x -> Py.Int.to_int x
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module MetaEstimatorMixin = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
Py.Module.get_function_with_keywords ns "MetaEstimatorMixin"
[||]
[]
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module RegressorMixin = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
Py.Module.get_function_with_keywords ns "RegressorMixin"
[||]
[]
let score ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords self "score"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
|> Py.Float.to_float
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
let calibration_curve ?normalize ?n_bins ?strategy ~y_true ~y_prob () =
Py.Module.get_function_with_keywords ns "calibration_curve"
[||]
(Wrap_utils.keyword_args [("normalize", Wrap_utils.Option.map normalize Py.Bool.of_bool); ("n_bins", Wrap_utils.Option.map n_bins Py.Int.of_int); ("strategy", Wrap_utils.Option.map strategy (function
| `Uniform -> Py.String.of_string "uniform"
| `Quantile -> Py.String.of_string "quantile"
)); ("y_true", Some(y_true |> Ndarray.to_pyobject)); ("y_prob", Some(y_prob |> Ndarray.to_pyobject))])
|> (fun x -> ((Wrap_utils.id (Py.Tuple.get x 0)), (Wrap_utils.id (Py.Tuple.get x 1))))
let check_X_y ?accept_sparse ?accept_large_sparse ?dtype ?order ?copy ?force_all_finite ?ensure_2d ?allow_nd ?multi_output ?ensure_min_samples ?ensure_min_features ?y_numeric ?warn_on_dtype ?estimator ~x ~y () =
Py.Module.get_function_with_keywords ns "check_X_y"
[||]
(Wrap_utils.keyword_args [("accept_sparse", Wrap_utils.Option.map accept_sparse (function
| `String x -> Py.String.of_string x
| `Bool x -> Py.Bool.of_bool x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
)); ("accept_large_sparse", Wrap_utils.Option.map accept_large_sparse Py.Bool.of_bool); ("dtype", Wrap_utils.Option.map dtype (function
| `String x -> Py.String.of_string x
| `Dtype x -> Wrap_utils.id x
| `TypeList x -> Wrap_utils.id x
| `None -> Py.String.of_string "None"
)); ("order", Wrap_utils.Option.map order (function
| `F -> Py.String.of_string "F"
| `C -> Py.String.of_string "C"
| `None -> Py.String.of_string "None"
)); ("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("force_all_finite", Wrap_utils.Option.map force_all_finite (function
| `Bool x -> Py.Bool.of_bool x
| `Allow_nan -> Py.String.of_string "allow-nan"
)); ("ensure_2d", Wrap_utils.Option.map ensure_2d Py.Bool.of_bool); ("allow_nd", Wrap_utils.Option.map allow_nd Py.Bool.of_bool); ("multi_output", Wrap_utils.Option.map multi_output Py.Bool.of_bool); ("ensure_min_samples", Wrap_utils.Option.map ensure_min_samples Py.Int.of_int); ("ensure_min_features", Wrap_utils.Option.map ensure_min_features Py.Int.of_int); ("y_numeric", Wrap_utils.Option.map y_numeric Py.Bool.of_bool); ("warn_on_dtype", Wrap_utils.Option.map warn_on_dtype (function
| `Bool x -> Py.Bool.of_bool x
| `None -> Py.String.of_string "None"
)); ("estimator", Wrap_utils.Option.map estimator (function
| `String x -> Py.String.of_string x
| `Estimator x -> Wrap_utils.id x
)); ("X", Some(x |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `ArrayLike x -> Wrap_utils.id x
| `SparseMatrix x -> Csr_matrix.to_pyobject x
))); ("y", Some(y |> (function
| `Ndarray x -> Ndarray.to_pyobject x
| `ArrayLike x -> Wrap_utils.id x
| `SparseMatrix x -> Csr_matrix.to_pyobject x
)))])
|> (fun x -> ((Wrap_utils.id (Py.Tuple.get x 0)), (Wrap_utils.id (Py.Tuple.get x 1))))
let check_array ?accept_sparse ?accept_large_sparse ?dtype ?order ?copy ?force_all_finite ?ensure_2d ?allow_nd ?ensure_min_samples ?ensure_min_features ?warn_on_dtype ?estimator ~array () =
Py.Module.get_function_with_keywords ns "check_array"
[||]
(Wrap_utils.keyword_args [("accept_sparse", Wrap_utils.Option.map accept_sparse (function
| `String x -> Py.String.of_string x
| `Bool x -> Py.Bool.of_bool x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
)); ("accept_large_sparse", Wrap_utils.Option.map accept_large_sparse Py.Bool.of_bool); ("dtype", Wrap_utils.Option.map dtype (function
| `String x -> Py.String.of_string x
| `Dtype x -> Wrap_utils.id x
| `TypeList x -> Wrap_utils.id x
| `None -> Py.String.of_string "None"
)); ("order", Wrap_utils.Option.map order (function
| `F -> Py.String.of_string "F"
| `C -> Py.String.of_string "C"
| `None -> Py.String.of_string "None"
)); ("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("force_all_finite", Wrap_utils.Option.map force_all_finite (function
| `Bool x -> Py.Bool.of_bool x
| `Allow_nan -> Py.String.of_string "allow-nan"
)); ("ensure_2d", Wrap_utils.Option.map ensure_2d Py.Bool.of_bool); ("allow_nd", Wrap_utils.Option.map allow_nd Py.Bool.of_bool); ("ensure_min_samples", Wrap_utils.Option.map ensure_min_samples Py.Int.of_int); ("ensure_min_features", Wrap_utils.Option.map ensure_min_features Py.Int.of_int); ("warn_on_dtype", Wrap_utils.Option.map warn_on_dtype (function
| `Bool x -> Py.Bool.of_bool x
| `None -> Py.String.of_string "None"
)); ("estimator", Wrap_utils.Option.map estimator (function
| `String x -> Py.String.of_string x
| `Estimator x -> Wrap_utils.id x
)); ("array", Some(array ))])
let check_consistent_length arrays =
Py.Module.get_function_with_keywords ns "check_consistent_length"
(Wrap_utils.pos_arg Wrap_utils.id arrays)
[]
let check_cv ?cv ?y ?classifier () =
Py.Module.get_function_with_keywords ns "check_cv"
[||]
(Wrap_utils.keyword_args [("cv", Wrap_utils.Option.map cv (function
| `Int x -> Py.Int.of_int x
| `CrossValGenerator x -> Wrap_utils.id x
| `Ndarray x -> Ndarray.to_pyobject x
)); ("y", Wrap_utils.Option.map y Ndarray.to_pyobject); ("classifier", Wrap_utils.Option.map classifier Py.Bool.of_bool)])
let check_is_fitted ?attributes ?msg ?all_or_any ~estimator () =
Py.Module.get_function_with_keywords ns "check_is_fitted"
[||]
(Wrap_utils.keyword_args [("attributes", Wrap_utils.Option.map attributes (function
| `String x -> Py.String.of_string x
| `ArrayLike x -> Wrap_utils.id x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
)); ("msg", Wrap_utils.Option.map msg Py.String.of_string); ("all_or_any", Wrap_utils.Option.map all_or_any (function
| `Callable x -> Wrap_utils.id x
| `PyObject x -> Wrap_utils.id x
)); ("estimator", Some(estimator ))])
let clone ?safe ~estimator () =
Py.Module.get_function_with_keywords ns "clone"
[||]
(Wrap_utils.keyword_args [("safe", Wrap_utils.Option.map safe Py.Bool.of_bool); ("estimator", Some(estimator |> (function
| `Estimator x -> Wrap_utils.id x
| `ArrayLike x -> Wrap_utils.id x
| `PyObject x -> Wrap_utils.id x
)))])
let column_or_1d ?warn ~y () =
Py.Module.get_function_with_keywords ns "column_or_1d"
[||]
(Wrap_utils.keyword_args [("warn", Wrap_utils.Option.map warn Py.Bool.of_bool); ("y", Some(y |> Ndarray.to_pyobject))])
|> Ndarray.of_pyobject
let fmin_bfgs ?fprime ?args ?gtol ?norm ?epsilon ?maxiter ?full_output ?disp ?retall ?callback ~f ~x0 () =
Py.Module.get_function_with_keywords ns "fmin_bfgs"
[||]
(Wrap_utils.keyword_args [("fprime", fprime); ("args", args); ("gtol", gtol); ("norm", norm); ("epsilon", epsilon); ("maxiter", maxiter); ("full_output", full_output); ("disp", disp); ("retall", retall); ("callback", callback); ("f", Some(f )); ("x0", Some(x0 ))])
|> Ndarray.of_pyobject
let indexable iterables =
Py.Module.get_function_with_keywords ns "indexable"
(Wrap_utils.pos_arg Wrap_utils.id iterables)
[]
let label_binarize ?neg_label ?pos_label ?sparse_output ~y ~classes () =
Py.Module.get_function_with_keywords ns "label_binarize"
[||]
(Wrap_utils.keyword_args [("neg_label", Wrap_utils.Option.map neg_label Py.Int.of_int); ("pos_label", Wrap_utils.Option.map pos_label Py.Int.of_int); ("sparse_output", Wrap_utils.Option.map sparse_output Py.Bool.of_bool); ("y", Some(y |> Ndarray.to_pyobject)); ("classes", Some(classes |> Ndarray.to_pyobject))])
let signature ?follow_wrapped ~obj () =
Py.Module.get_function_with_keywords ns "signature"
[||]
(Wrap_utils.keyword_args [("follow_wrapped", follow_wrapped); ("obj", Some(obj ))])