Source file Discriminant_analysis.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
let () = Wrap_utils.init ();;
let __wrap_namespace = Py.import "sklearn.discriminant_analysis"
let get_py name = Py.Module.get __wrap_namespace name
module ChangedBehaviorWarning = struct
type tag = [`ChangedBehaviorWarning]
type t = [`BaseException | `ChangedBehaviorWarning | `Object] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_exception x = (x :> [`BaseException] Obj.t)
let with_traceback ~tb self =
Py.Module.get_function_with_keywords (to_pyobject self) "with_traceback"
[||]
(Wrap_utils.keyword_args [("tb", Some(tb ))])
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module LinearClassifierMixin = struct
type tag = [`LinearClassifierMixin]
type t = [`ClassifierMixin | `LinearClassifierMixin | `Object] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_classifier x = (x :> [`ClassifierMixin] Obj.t)
let create () =
Py.Module.get_function_with_keywords __wrap_namespace "LinearClassifierMixin"
[||]
[]
|> of_pyobject
let decision_function ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "decision_function"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "score"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> Py.Float.to_float
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module LinearDiscriminantAnalysis = struct
type tag = [`LinearDiscriminantAnalysis]
type t = [`BaseEstimator | `ClassifierMixin | `LinearClassifierMixin | `LinearDiscriminantAnalysis | `Object | `TransformerMixin] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_classifier x = (x :> [`ClassifierMixin] Obj.t)
let as_linear_classifier x = (x :> [`LinearClassifierMixin] Obj.t)
let as_transformer x = (x :> [`TransformerMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let create ?solver ?shrinkage ?priors ?n_components ?store_covariance ?tol () =
Py.Module.get_function_with_keywords __wrap_namespace "LinearDiscriminantAnalysis"
[||]
(Wrap_utils.keyword_args [("solver", Wrap_utils.Option.map solver Py.String.of_string); ("shrinkage", Wrap_utils.Option.map shrinkage (function
| `F x -> Py.Float.of_float x
| `S x -> Py.String.of_string x
)); ("priors", Wrap_utils.Option.map priors Np.Obj.to_pyobject); ("n_components", Wrap_utils.Option.map n_components Py.Int.of_int); ("store_covariance", Wrap_utils.Option.map store_covariance Py.Bool.of_bool); ("tol", Wrap_utils.Option.map tol Py.Float.of_float)])
|> of_pyobject
let decision_function ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "decision_function"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let fit ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "fit"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> of_pyobject
let fit_transform ?y ?fit_params ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "fit_transform"
[||]
(List.rev_append (Wrap_utils.keyword_args [("y", Wrap_utils.Option.map y Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject))]) (match fit_params with None -> [] | Some x -> x))
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let get_params ?deep self =
Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
|> Dict.of_pyobject
let predict ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict_log_proba ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict_log_proba"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict_proba ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict_proba"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "score"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> Py.Float.to_float
let set_params ?params self =
Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
[||]
(match params with None -> [] | Some x -> x)
|> of_pyobject
let transform ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "transform"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let coef_opt self =
match Py.Object.get_attr_string (to_pyobject self) "coef_" with
| None -> failwith "attribute coef_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let coef_ self = match coef_opt self with
| None -> raise Not_found
| Some x -> x
let intercept_opt self =
match Py.Object.get_attr_string (to_pyobject self) "intercept_" with
| None -> failwith "attribute intercept_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let intercept_ self = match intercept_opt self with
| None -> raise Not_found
| Some x -> x
let covariance_opt self =
match Py.Object.get_attr_string (to_pyobject self) "covariance_" with
| None -> failwith "attribute covariance_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let covariance_ self = match covariance_opt self with
| None -> raise Not_found
| Some x -> x
let explained_variance_ratio_opt self =
match Py.Object.get_attr_string (to_pyobject self) "explained_variance_ratio_" with
| None -> failwith "attribute explained_variance_ratio_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let explained_variance_ratio_ self = match explained_variance_ratio_opt self with
| None -> raise Not_found
| Some x -> x
let means_opt self =
match Py.Object.get_attr_string (to_pyobject self) "means_" with
| None -> failwith "attribute means_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let means_ self = match means_opt self with
| None -> raise Not_found
| Some x -> x
let priors_opt self =
match Py.Object.get_attr_string (to_pyobject self) "priors_" with
| None -> failwith "attribute priors_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let priors_ self = match priors_opt self with
| None -> raise Not_found
| Some x -> x
let scalings_opt self =
match Py.Object.get_attr_string (to_pyobject self) "scalings_" with
| None -> failwith "attribute scalings_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let scalings_ self = match scalings_opt self with
| None -> raise Not_found
| Some x -> x
let xbar_opt self =
match Py.Object.get_attr_string (to_pyobject self) "xbar_" with
| None -> failwith "attribute xbar_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let xbar_ self = match xbar_opt self with
| None -> raise Not_found
| Some x -> x
let classes_opt self =
match Py.Object.get_attr_string (to_pyobject self) "classes_" with
| None -> failwith "attribute classes_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let classes_ self = match classes_opt self with
| None -> raise Not_found
| Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module QuadraticDiscriminantAnalysis = struct
type tag = [`QuadraticDiscriminantAnalysis]
type t = [`BaseEstimator | `ClassifierMixin | `Object | `QuadraticDiscriminantAnalysis] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_classifier x = (x :> [`ClassifierMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let create ?priors ?reg_param ?store_covariance ?tol () =
Py.Module.get_function_with_keywords __wrap_namespace "QuadraticDiscriminantAnalysis"
[||]
(Wrap_utils.keyword_args [("priors", Wrap_utils.Option.map priors Np.Obj.to_pyobject); ("reg_param", Wrap_utils.Option.map reg_param Py.Float.of_float); ("store_covariance", Wrap_utils.Option.map store_covariance Py.Bool.of_bool); ("tol", Wrap_utils.Option.map tol Py.Float.of_float)])
|> of_pyobject
let decision_function ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "decision_function"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let fit ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "fit"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> of_pyobject
let get_params ?deep self =
Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
|> Dict.of_pyobject
let predict ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict_log_proba ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict_log_proba"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let predict_proba ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "predict_proba"
[||]
(Wrap_utils.keyword_args [("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let score ?sample_weight ~x ~y self =
Py.Module.get_function_with_keywords (to_pyobject self) "score"
[||]
(Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> Py.Float.to_float
let set_params ?params self =
Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
[||]
(match params with None -> [] | Some x -> x)
|> of_pyobject
let covariance_opt self =
match Py.Object.get_attr_string (to_pyobject self) "covariance_" with
| None -> failwith "attribute covariance_ not found"
| Some x -> if Py.is_none x then None else Some (Np.Numpy.Ndarray.List.of_pyobject x)
let covariance_ self = match covariance_opt self with
| None -> raise Not_found
| Some x -> x
let means_opt self =
match Py.Object.get_attr_string (to_pyobject self) "means_" with
| None -> failwith "attribute means_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let means_ self = match means_opt self with
| None -> raise Not_found
| Some x -> x
let priors_opt self =
match Py.Object.get_attr_string (to_pyobject self) "priors_" with
| None -> failwith "attribute priors_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let priors_ self = match priors_opt self with
| None -> raise Not_found
| Some x -> x
let rotations_opt self =
match Py.Object.get_attr_string (to_pyobject self) "rotations_" with
| None -> failwith "attribute rotations_ not found"
| Some x -> if Py.is_none x then None else Some (Np.Numpy.Ndarray.List.of_pyobject x)
let rotations_ self = match rotations_opt self with
| None -> raise Not_found
| Some x -> x
let scalings_opt self =
match Py.Object.get_attr_string (to_pyobject self) "scalings_" with
| None -> failwith "attribute scalings_ not found"
| Some x -> if Py.is_none x then None else Some (Np.Numpy.Ndarray.List.of_pyobject x)
let scalings_ self = match scalings_opt self with
| None -> raise Not_found
| Some x -> x
let classes_opt self =
match Py.Object.get_attr_string (to_pyobject self) "classes_" with
| None -> failwith "attribute classes_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let classes_ self = match classes_opt self with
| None -> raise Not_found
| Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
module StandardScaler = struct
type tag = [`StandardScaler]
type t = [`BaseEstimator | `Object | `StandardScaler | `TransformerMixin] Obj.t
let of_pyobject x = ((Obj.of_pyobject x) : t)
let to_pyobject x = Obj.to_pyobject x
let as_transformer x = (x :> [`TransformerMixin] Obj.t)
let as_estimator x = (x :> [`BaseEstimator] Obj.t)
let create ?copy ?with_mean ?with_std () =
Py.Module.get_function_with_keywords __wrap_namespace "StandardScaler"
[||]
(Wrap_utils.keyword_args [("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("with_mean", Wrap_utils.Option.map with_mean Py.Bool.of_bool); ("with_std", Wrap_utils.Option.map with_std Py.Bool.of_bool)])
|> of_pyobject
let fit ?y ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "fit"
[||]
(Wrap_utils.keyword_args [("y", y); ("X", Some(x |> Np.Obj.to_pyobject))])
|> of_pyobject
let fit_transform ?y ?fit_params ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "fit_transform"
[||]
(List.rev_append (Wrap_utils.keyword_args [("y", Wrap_utils.Option.map y Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject))]) (match fit_params with None -> [] | Some x -> x))
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let get_params ?deep self =
Py.Module.get_function_with_keywords (to_pyobject self) "get_params"
[||]
(Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])
|> Dict.of_pyobject
let inverse_transform ?copy ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "inverse_transform"
[||]
(Wrap_utils.keyword_args [("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let partial_fit ?y ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "partial_fit"
[||]
(Wrap_utils.keyword_args [("y", y); ("X", Some(x |> Np.Obj.to_pyobject))])
|> of_pyobject
let set_params ?params self =
Py.Module.get_function_with_keywords (to_pyobject self) "set_params"
[||]
(match params with None -> [] | Some x -> x)
|> of_pyobject
let transform ?copy ~x self =
Py.Module.get_function_with_keywords (to_pyobject self) "transform"
[||]
(Wrap_utils.keyword_args [("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let scale_opt self =
match Py.Object.get_attr_string (to_pyobject self) "scale_" with
| None -> failwith "attribute scale_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let scale_ self = match scale_opt self with
| None -> raise Not_found
| Some x -> x
let mean_opt self =
match Py.Object.get_attr_string (to_pyobject self) "mean_" with
| None -> failwith "attribute mean_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let mean_ self = match mean_opt self with
| None -> raise Not_found
| Some x -> x
let var_opt self =
match Py.Object.get_attr_string (to_pyobject self) "var_" with
| None -> failwith "attribute var_ not found"
| Some x -> if Py.is_none x then None else Some ((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) x)
let var_ self = match var_opt self with
| None -> raise Not_found
| Some x -> x
let n_samples_seen_opt self =
match Py.Object.get_attr_string (to_pyobject self) "n_samples_seen_" with
| None -> failwith "attribute n_samples_seen_ not found"
| Some x -> if Py.is_none x then None else Some (Wrap_utils.id x)
let n_samples_seen_ self = match n_samples_seen_opt self with
| None -> raise Not_found
| Some x -> x
let to_string self = Py.Object.to_string (to_pyobject self)
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)
end
let check_X_y ?accept_sparse ?accept_large_sparse ?dtype ?order ?copy ?force_all_finite ?ensure_2d ?allow_nd ?multi_output ?ensure_min_samples ?ensure_min_features ?y_numeric ?warn_on_dtype ?estimator ~x ~y () =
Py.Module.get_function_with_keywords __wrap_namespace "check_X_y"
[||]
(Wrap_utils.keyword_args [("accept_sparse", Wrap_utils.Option.map accept_sparse (function
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
| `S x -> Py.String.of_string x
| `Bool x -> Py.Bool.of_bool x
)); ("accept_large_sparse", Wrap_utils.Option.map accept_large_sparse Py.Bool.of_bool); ("dtype", Wrap_utils.Option.map dtype (function
| `S x -> Py.String.of_string x
| `Dtype x -> Np.Dtype.to_pyobject x
| `Dtypes x -> (fun ml -> Py.List.of_list_map Np.Dtype.to_pyobject ml) x
| `None -> Py.none
)); ("order", Wrap_utils.Option.map order (function
| `F -> Py.String.of_string "F"
| `C -> Py.String.of_string "C"
)); ("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("force_all_finite", Wrap_utils.Option.map force_all_finite (function
| `Allow_nan -> Py.String.of_string "allow-nan"
| `Bool x -> Py.Bool.of_bool x
)); ("ensure_2d", Wrap_utils.Option.map ensure_2d Py.Bool.of_bool); ("allow_nd", Wrap_utils.Option.map allow_nd Py.Bool.of_bool); ("multi_output", Wrap_utils.Option.map multi_output Py.Bool.of_bool); ("ensure_min_samples", Wrap_utils.Option.map ensure_min_samples Py.Int.of_int); ("ensure_min_features", Wrap_utils.Option.map ensure_min_features Py.Int.of_int); ("y_numeric", Wrap_utils.Option.map y_numeric Py.Bool.of_bool); ("warn_on_dtype", Wrap_utils.Option.map warn_on_dtype Py.Bool.of_bool); ("estimator", Wrap_utils.Option.map estimator Np.Obj.to_pyobject); ("X", Some(x |> Np.Obj.to_pyobject)); ("y", Some(y |> Np.Obj.to_pyobject))])
|> (fun x -> ((Wrap_utils.id (Py.Tuple.get x 0)), (Wrap_utils.id (Py.Tuple.get x 1))))
let check_array ?accept_sparse ?accept_large_sparse ?dtype ?order ?copy ?force_all_finite ?ensure_2d ?allow_nd ?ensure_min_samples ?ensure_min_features ?warn_on_dtype ?estimator ~array () =
Py.Module.get_function_with_keywords __wrap_namespace "check_array"
[||]
(Wrap_utils.keyword_args [("accept_sparse", Wrap_utils.Option.map accept_sparse (function
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
| `S x -> Py.String.of_string x
| `Bool x -> Py.Bool.of_bool x
)); ("accept_large_sparse", Wrap_utils.Option.map accept_large_sparse Py.Bool.of_bool); ("dtype", Wrap_utils.Option.map dtype (function
| `S x -> Py.String.of_string x
| `Dtype x -> Np.Dtype.to_pyobject x
| `Dtypes x -> (fun ml -> Py.List.of_list_map Np.Dtype.to_pyobject ml) x
| `None -> Py.none
)); ("order", Wrap_utils.Option.map order (function
| `F -> Py.String.of_string "F"
| `C -> Py.String.of_string "C"
)); ("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("force_all_finite", Wrap_utils.Option.map force_all_finite (function
| `Allow_nan -> Py.String.of_string "allow-nan"
| `Bool x -> Py.Bool.of_bool x
)); ("ensure_2d", Wrap_utils.Option.map ensure_2d Py.Bool.of_bool); ("allow_nd", Wrap_utils.Option.map allow_nd Py.Bool.of_bool); ("ensure_min_samples", Wrap_utils.Option.map ensure_min_samples Py.Int.of_int); ("ensure_min_features", Wrap_utils.Option.map ensure_min_features Py.Int.of_int); ("warn_on_dtype", Wrap_utils.Option.map warn_on_dtype Py.Bool.of_bool); ("estimator", Wrap_utils.Option.map estimator Np.Obj.to_pyobject); ("array", Some(array ))])
let check_classification_targets y =
Py.Module.get_function_with_keywords __wrap_namespace "check_classification_targets"
[||]
(Wrap_utils.keyword_args [("y", Some(y |> Np.Obj.to_pyobject))])
let check_is_fitted ?attributes ?msg ?all_or_any ~estimator () =
Py.Module.get_function_with_keywords __wrap_namespace "check_is_fitted"
[||]
(Wrap_utils.keyword_args [("attributes", Wrap_utils.Option.map attributes (function
| `S x -> Py.String.of_string x
| `Arr x -> Np.Obj.to_pyobject x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
)); ("msg", Wrap_utils.Option.map msg Py.String.of_string); ("all_or_any", Wrap_utils.Option.map all_or_any (function
| `Callable x -> Wrap_utils.id x
| `PyObject x -> Wrap_utils.id x
)); ("estimator", Some(estimator |> Np.Obj.to_pyobject))])
let empirical_covariance ?assume_centered ~x () =
Py.Module.get_function_with_keywords __wrap_namespace "empirical_covariance"
[||]
(Wrap_utils.keyword_args [("assume_centered", Wrap_utils.Option.map assume_centered Py.Bool.of_bool); ("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let expit ?out ?where ~x () =
Py.Module.get_function_with_keywords __wrap_namespace "expit"
(Array.of_list @@ List.concat [[x |> Np.Obj.to_pyobject]])
(Wrap_utils.keyword_args [("out", out); ("where", where)])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let ledoit_wolf ?assume_centered ?block_size ~x () =
Py.Module.get_function_with_keywords __wrap_namespace "ledoit_wolf"
[||]
(Wrap_utils.keyword_args [("assume_centered", Wrap_utils.Option.map assume_centered Py.Bool.of_bool); ("block_size", Wrap_utils.Option.map block_size Py.Int.of_int); ("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun x -> (((fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t)) (Py.Tuple.get x 0)), (Py.Float.to_float (Py.Tuple.get x 1))))
let shrunk_covariance ?shrinkage ~emp_cov () =
Py.Module.get_function_with_keywords __wrap_namespace "shrunk_covariance"
[||]
(Wrap_utils.keyword_args [("shrinkage", Wrap_utils.Option.map shrinkage Py.Float.of_float); ("emp_cov", Some(emp_cov |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let softmax ?copy ~x () =
Py.Module.get_function_with_keywords __wrap_namespace "softmax"
[||]
(Wrap_utils.keyword_args [("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("X", Some(x |> Np.Obj.to_pyobject))])
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))
let unique_labels ys =
Py.Module.get_function_with_keywords __wrap_namespace "unique_labels"
(Array.of_list @@ List.concat [(List.map Wrap_utils.id ys)])
[]
|> (fun py -> (Np.Obj.of_pyobject py : [>`ArrayLike] Np.Obj.t))