1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
open! Core_kernel
open! Import
open! Deferred_std
module Deferred = Deferred1
type 'a outcome =
[ `Ok of 'a
| `Aborted
| `Raised of exn
]
[@@deriving sexp_of]
module Internal_job : sig
type 'a t [@@deriving sexp_of]
val create : ('a -> 'b Deferred.t) -> 'a t * 'b outcome Deferred.t
val run : 'a t -> 'a -> [ `Ok | `Raised ] Deferred.t
val abort : _ t -> unit
end = struct
type 'a t =
{ start : [ `Abort | `Start of 'a ] Ivar.t
; outcome : [ `Ok | `Aborted | `Raised ] Deferred.t
}
[@@deriving sexp_of]
let create work =
let start = Ivar.create () in
let result =
match%bind Ivar.read start with
| `Abort -> return `Aborted
| `Start a ->
(match%map Monitor.try_with (fun () -> work a) with
| Ok a -> `Ok a
| Error exn -> `Raised exn)
in
let outcome =
match%map result with
| `Ok _ -> `Ok
| `Aborted -> `Aborted
| `Raised _ -> `Raised
in
let t = { start; outcome } in
t, result
;;
let run t a =
Ivar.fill t.start (`Start a);
match%map t.outcome with
| `Aborted -> assert false
| (`Ok | `Raised) as x -> x
;;
let abort t = Ivar.fill t.start `Abort
end
type 'a t =
{ continue_on_error : bool
; max_concurrent_jobs : int
;
job_resources_not_in_use : 'a Stack_or_counter.t
;
jobs_waiting_to_start : 'a Internal_job.t Queue.t
;
mutable num_jobs_running : int
;
mutable capacity_available : unit Ivar.t option
;
mutable is_dead : bool
;
mutable cleans : ('a -> unit Deferred.t) list
;
mutable num_resources_not_cleaned : int
;
cleaned : unit Ivar.t
}
[@@deriving fields, sexp_of]
let invariant invariant_a t : unit =
try
let check f field = f (Field.get field t) in
Fields.iter
~continue_on_error:ignore
~max_concurrent_jobs:
(check (fun max_concurrent_jobs -> assert (max_concurrent_jobs > 0)))
~job_resources_not_in_use:
(check (fun job_resources_not_in_use ->
Stack_or_counter.iter job_resources_not_in_use ~f:invariant_a;
assert (
Stack_or_counter.length job_resources_not_in_use
= if t.is_dead then 0 else t.max_concurrent_jobs - t.num_jobs_running)))
~jobs_waiting_to_start:
(check (function jobs_waiting_to_start ->
if t.is_dead then assert (Queue.is_empty jobs_waiting_to_start)))
~num_jobs_running:
(check (fun num_jobs_running ->
assert (num_jobs_running >= 0);
assert (num_jobs_running <= t.max_concurrent_jobs);
if num_jobs_running < t.max_concurrent_jobs
then assert (Queue.is_empty t.jobs_waiting_to_start)))
~capacity_available:
(check (function
| None -> ()
| Some ivar -> assert (Ivar.is_empty ivar)))
~is_dead:ignore
~cleans:ignore
~num_resources_not_cleaned:
(check (fun num_resources_not_cleaned ->
assert (num_resources_not_cleaned >= 0);
assert (num_resources_not_cleaned <= t.max_concurrent_jobs);
if num_resources_not_cleaned < t.max_concurrent_jobs then assert t.is_dead))
~cleaned:
(check (fun cleaned ->
if Ivar.is_full cleaned then assert (t.num_resources_not_cleaned = 0)))
with
| exn -> raise_s [%message "Throttle.invariant failed" (exn : exn) (t : _ t)]
;;
module T2 = struct
type nonrec ('a, 'kind) t = 'a t [@@deriving sexp_of]
let invariant invariant_a _ t = invariant invariant_a t
end
let num_jobs_waiting_to_start t = Queue.length t.jobs_waiting_to_start
let clean_resource t a =
Deferred.all_unit (List.map t.cleans ~f:(fun f -> f a))
>>> fun () ->
t.num_resources_not_cleaned <- t.num_resources_not_cleaned - 1;
if t.num_resources_not_cleaned = 0 then Ivar.fill t.cleaned ()
;;
let kill t =
if not t.is_dead
then (
t.is_dead <- true;
Queue.iter t.jobs_waiting_to_start ~f:Internal_job.abort;
Queue.clear t.jobs_waiting_to_start;
Stack_or_counter.iter t.job_resources_not_in_use ~f:(fun a -> clean_resource t a);
Stack_or_counter.clear t.job_resources_not_in_use)
;;
let at_kill t f =
let f = unstage (Monitor.Exported_for_scheduler.preserve_execution_context' f) in
t.cleans <- f :: t.cleans
;;
let cleaned t = Ivar.read t.cleaned
let rec start_job t =
assert (not t.is_dead);
assert (t.num_jobs_running < t.max_concurrent_jobs);
assert (not (Queue.is_empty t.jobs_waiting_to_start));
let job = Queue.dequeue_exn t.jobs_waiting_to_start in
t.num_jobs_running <- t.num_jobs_running + 1;
let job_resource = Stack_or_counter.pop_exn t.job_resources_not_in_use in
Internal_job.run job job_resource
>>> fun res ->
t.num_jobs_running <- t.num_jobs_running - 1;
(match res with
| `Ok -> ()
| `Raised -> if not t.continue_on_error then kill t);
if t.is_dead
then clean_resource t job_resource
else (
Stack_or_counter.push t.job_resources_not_in_use job_resource;
if not (Queue.is_empty t.jobs_waiting_to_start)
then start_job t
else (
match t.capacity_available with
| None -> ()
| Some ivar ->
Ivar.fill ivar ();
t.capacity_available <- None))
;;
let create_internal ~continue_on_error job_resources =
let max_concurrent_jobs = Stack_or_counter.length job_resources in
{ continue_on_error
; max_concurrent_jobs
; job_resources_not_in_use = job_resources
; jobs_waiting_to_start = Queue.create ()
; num_jobs_running = 0
; capacity_available = None
; is_dead = false
; cleans = []
; num_resources_not_cleaned = max_concurrent_jobs
; cleaned = Ivar.create ()
}
;;
let create_with ~continue_on_error job_resources =
create_internal ~continue_on_error (Stack_or_counter.of_list job_resources)
;;
module Sequencer = struct
type nonrec 'a t = 'a t [@@deriving sexp_of]
let create ?(continue_on_error = false) a = create_with ~continue_on_error [ a ]
end
let create ~continue_on_error ~max_concurrent_jobs =
if max_concurrent_jobs <= 0
then
raise_s
[%message
"Throttle.create requires positive max_concurrent_jobs, but got"
(max_concurrent_jobs : int)];
create_internal
~continue_on_error
(Stack_or_counter.create_counter ~length:max_concurrent_jobs)
;;
module Job = struct
type ('a, 'b) t =
{ internal_job : 'a Internal_job.t
; result : [ `Ok of 'b | `Aborted | `Raised of exn ] Deferred.t
}
let result t = t.result
let abort t = Internal_job.abort t.internal_job
let create f =
let internal_job, result = Internal_job.create f in
{ internal_job; result }
;;
end
let enqueue' t f =
let job = Job.create f in
if t.is_dead
then Job.abort job
else (
Queue.enqueue t.jobs_waiting_to_start job.internal_job;
if t.num_jobs_running < t.max_concurrent_jobs then start_job t);
Job.result job
;;
let handle_enqueue_result result =
match result with
| `Ok a -> a
| `Aborted -> raise_s [%message "throttle aborted job"]
| `Raised exn -> raise exn
;;
let enqueue t f = enqueue' t f >>| handle_enqueue_result
let enqueue_exclusive t f =
let n = t.max_concurrent_jobs in
if Int.( >= ) n 1_000_000
then
raise_s
[%sexp
"[enqueue_exclusive] was called with a very large value of \
[max_concurrent_jobs]. This doesn't work."];
let done_ = Ivar.create () in
assert (n > 0);
let f_placeholder _slot = Ivar.read done_ in
for _ = 1 to n - 1 do
don't_wait_for (enqueue t f_placeholder)
done;
let%map result = enqueue' t (fun _slot -> f ()) in
Ivar.fill done_ ();
handle_enqueue_result result
;;
let monad_sequence_how ?(how = `Sequential) ~f =
stage
(match how with
| `Parallel -> f
| (`Sequential | `Max_concurrent_jobs _) as how ->
let max_concurrent_jobs =
match how with
| `Sequential -> 1
| `Max_concurrent_jobs max_concurrent_jobs -> max_concurrent_jobs
in
let t = create ~continue_on_error:false ~max_concurrent_jobs in
fun a -> enqueue t (fun () -> f a))
;;
let monad_sequence_how2 ?(how = `Sequential) ~f =
stage
(match how with
| `Parallel -> f
| (`Sequential | `Max_concurrent_jobs _) as how ->
let max_concurrent_jobs =
match how with
| `Sequential -> 1
| `Max_concurrent_jobs max_concurrent_jobs -> max_concurrent_jobs
in
let t = create ~continue_on_error:false ~max_concurrent_jobs in
fun a1 a2 -> enqueue t (fun () -> f a1 a2))
;;
let prior_jobs_done t =
Deferred.create (fun all_dummy_jobs_running ->
let dummy_jobs_running = ref 0 in
for _ = 1 to t.max_concurrent_jobs do
don't_wait_for
(enqueue t (fun _ ->
incr dummy_jobs_running;
if !dummy_jobs_running = t.max_concurrent_jobs
then Ivar.fill all_dummy_jobs_running ();
Ivar.read all_dummy_jobs_running))
done)
;;
let capacity_available t =
if num_jobs_running t < max_concurrent_jobs t
then return ()
else (
match t.capacity_available with
| Some ivar -> Ivar.read ivar
| None -> Deferred.create (fun ivar -> t.capacity_available <- Some ivar))
;;