Source file bitv.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201

(* This file is free software, part of dolmen. See file "LICENSE" for more information *)

(* Value definition *)
(* ************************************************************************* *)

(** Bitvectors are represented by an unsigned unbounded integer. *)
type t = Z.t

let compare = Z.compare

let print_bitpattern fmt t =
  let rec aux fmt t n =
    if n < 0 then ()
    else begin
      Format.fprintf fmt "%d" (if Z.testbit t n then 1 else 0);
      aux fmt t (n - 1)
    end
  in
  aux fmt t (Z.numbits t - 1)

let print fmt t =
  Format.fprintf fmt "%a / #%a"
    Z.pp_print t print_bitpattern t

let ops = Value.ops ~print ~compare ()


(* Value helpers *)
(* ************************************************************************* *)



let is_unsigned_integer size z =
  Z.sign z >= 0 && Z.numbits z <= size

let ubitv n t =
  let t = Value.extract_exn ~ops t in
  (* the typing of expressions should guarantee that this never happens *)
  if not (is_unsigned_integer n t) then
    (invalid_arg
      (Format.asprintf "%a is not an unsigned integer of size %i"
         Z.pp_print t n));
  t

let from_bitv n t =
  (* TODO: proper error *)
  if not (is_unsigned_integer n t) then (
    (* Format.eprintf "@[[BV] %s(%a) is not of size %i@]@."
      (Z.format (Printf.sprintf "%%0+#%ib" n) t)
      Z.pp_print t n; *)
    assert false (* Internal error *)
  );
  t

let extract n t = Z.extract t 0 n

let concat n m a b =
  Z.logor (Z.shift_left (ubitv n a) m) (ubitv m b)

let repeat n k a =
  let rec loop n k acc z =
    if k = 0 then acc
    else
      let acc = Z.logor (Z.shift_left acc n) z in
      loop n (k - 1) acc z
  in
  loop n k Z.zero a

let rotate_left n i a =
  let k = i mod n in
  extract n (Z.logor (Z.shift_left a k) (Z.extract a (n - k) k))

let rotate_right n i a =
  let k = i mod n in
  extract n (Z.logor (Z.shift_left a (n - k)) (Z.shift_right a k))


(* Builtins *)
(* ************************************************************************* *)

module E = Dolmen.Std.Expr
module B = Dolmen.Std.Builtin

let mk n i = Value.mk ~ops (from_bitv n i)

let cmp ~cst p =
  Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun x y -> Bool.mk @@ p x y))
let op2 ~cst ~size f =
  Some (Fun.mk_clos @@ Fun.fun_2 ~cst (fun x y -> mk size @@ f x y))
let op1 ~cst ~size f =
  Some (Fun.mk_clos @@ Fun.fun_1 ~cst (fun x -> mk size @@ f x))

let sbitv n t = Z.signed_extract (ubitv n t) 0 n
let extract n t = Z.extract t 0 n

let builtins ~eval:_ _ (cst : Dolmen.Std.Expr.Term.Const.t) =
  match cst.builtin with
  | B.Bitvec s ->
    Some (mk (String.length s) (Z.of_string_base 2 s))
  | B.Bitv_concat { n; m } ->
    op2 ~cst ~size:(n + m) (concat n m)
  | B.Bitv_extract { n; i; j } ->
    op1 ~cst ~size:(i - j + 1) (fun a -> Z.extract (ubitv n a) j (i - j + 1))
  | B.Bitv_repeat { n; k } ->
    op1 ~cst ~size:(n * k) (fun a -> repeat n k (ubitv n a))
  | B.Bitv_zero_extend { n; k } ->
    op1 ~cst ~size:(n + k) (ubitv n)
  | B.Bitv_sign_extend { n; k } ->
    op1 ~cst ~size:(n + k) (fun a -> extract (n + k) (sbitv n a))
  | B.Bitv_rotate_left { n; i } ->
    op1 ~cst ~size:n (fun a -> rotate_left n i (ubitv n a))
  | B.Bitv_rotate_right { n; i } ->
    op1 ~cst ~size:n (fun a -> rotate_right n i (ubitv n a))
  | B.Bitv_not n ->
    op1 ~cst ~size:n (fun a -> extract n (Z.lognot (ubitv n a)))
  | B.Bitv_and n ->
    op2 ~cst ~size:n (fun a b -> Z.logand (ubitv n a) (ubitv n b))
  | B.Bitv_or n ->
    op2 ~cst ~size:n (fun a b ->
        from_bitv n (Z.logor (ubitv n a) (ubitv n b)))
  | B.Bitv_nand n ->
    op2 ~cst ~size:n (fun a b ->
        extract n (Z.lognot (Z.logand (ubitv n a) (ubitv n b))))
  | B.Bitv_nor n ->
    op2 ~cst ~size:n (fun a b ->
        extract n (Z.lognot (Z.logor (ubitv n a) (ubitv n b))))
  | B.Bitv_xor n ->
    op2 ~cst ~size:n (fun a b -> extract n (Z.logxor (ubitv n a) (ubitv n b)))
  | B.Bitv_xnor n ->
    op2 ~cst ~size:n (fun a b ->
        extract n (Z.logxor (ubitv n a) (Z.lognot (ubitv n b))))
  | B.Bitv_comp n ->
    op2 ~cst ~size:n (fun a b ->
        if Z.equal (ubitv n a) (ubitv n b)
        then extract 1 Z.minus_one
        else from_bitv 1 Z.zero)
  | B.Bitv_neg n ->
    op1 ~cst ~size:n (fun a ->
        extract n (Z.sub (Z.shift_left Z.one n) (ubitv n a)))
  | B.Bitv_add n ->
    op2 ~cst ~size:n (fun a b -> extract n (Z.add (ubitv n a) (ubitv n b)))
  | B.Bitv_sub n ->
    op2 ~cst ~size:n (fun a b -> extract n (Z.sub (ubitv n a) (ubitv n b)))
  | B.Bitv_mul n ->
    op2 ~cst ~size:n (fun a b -> extract n (Z.mul (ubitv n a) (ubitv n b)))
  | B.Bitv_udiv n ->
    op2 ~cst ~size:n (fun a b ->
        let b = ubitv n b in
        if Z.equal b Z.zero then extract n Z.minus_one
        else extract n (Z.div (ubitv n a) b))
  | B.Bitv_urem n ->
    op2 ~cst ~size:n (fun a b ->
        let b = ubitv n b in
        if Z.equal b Z.zero then from_bitv n (ubitv n a)
        else extract n (Z.rem (ubitv n a) b))
  | B.Bitv_sdiv n ->
    op2 ~cst ~size:n (fun a b ->
        let b = sbitv n b in
        let a = sbitv n a in
        if Z.equal b Z.zero then
          if Z.sign a >= 0 then extract n Z.minus_one else extract n Z.one
        else extract n (Z.div a b))
  | B.Bitv_srem n ->
    op2 ~cst ~size:n (fun a b ->
        let b = sbitv n b in
        if Z.equal b Z.zero then from_bitv n (ubitv n a)
        else extract n (Z.rem (sbitv n a) b))
  | B.Bitv_smod n ->
    op2 ~cst ~size:n (fun a b ->
        let b = sbitv n b in
        if Z.equal b Z.zero then from_bitv n (ubitv n a)
        else begin
          let a = sbitv n a in
          extract n (Z.sub a (Z.mul (Z.fdiv a b) b))
        end)
  | B.Bitv_shl n ->
    op2 ~cst ~size:n (fun a b ->
        let b = ubitv n b in
        if Z.leq (Z.of_int n) b then from_bitv n Z.zero
        else extract n (Z.shift_left (ubitv n a) (Z.to_int b)))
  | B.Bitv_lshr n ->
    op2 ~cst ~size:n (fun a b ->
        let b = ubitv n b in
        if Z.leq (Z.of_int n) b then from_bitv n Z.zero
        else extract n (Z.shift_right (ubitv n a) (Z.to_int b)))
  | B.Bitv_ashr n ->
    op2 ~cst ~size:n (fun a b ->
        let b = ubitv n b in
        let b = if Z.leq (Z.of_int n) b then n else Z.to_int b in
        extract n (Z.shift_right (sbitv n a) b))
  | B.Bitv_ult n -> cmp ~cst (fun a b -> Z.lt (ubitv n a) (ubitv n b))
  | B.Bitv_ule n -> cmp ~cst (fun a b -> Z.leq (ubitv n a) (ubitv n b))
  | B.Bitv_ugt n -> cmp ~cst (fun a b -> Z.gt (ubitv n a) (ubitv n b))
  | B.Bitv_uge n -> cmp ~cst (fun a b -> Z.geq (ubitv n a) (ubitv n b))
  | B.Bitv_slt n -> cmp ~cst (fun a b -> Z.lt (sbitv n a) (sbitv n b))
  | B.Bitv_sle n -> cmp ~cst (fun a b -> Z.leq (sbitv n a) (sbitv n b))
  | B.Bitv_sgt n -> cmp ~cst (fun a b -> Z.gt (sbitv n a) (sbitv n b))
  | B.Bitv_sge n -> cmp ~cst (fun a b -> Z.geq (sbitv n a) (sbitv n b))
  | _ -> None