Source file heap.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2010                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

module type Ordered = sig
  type t
  val compare : t -> t -> int
end

exception EmptyHeap

module Imperative(X : Ordered) = struct

  (* The heap is encoded in the array [data], where elements are stored
     from [0] to [size - 1]. From an element stored at [i], the left
     (resp. right) subtree, if any, is rooted at [2*i+1] (resp. [2*i+2]). *)

  type t = { mutable size : int; mutable data : X.t array }

  (* When [create n] is called, we cannot allocate the array, since there is
     no known value of type [X.t]; we'll wait for the first addition to
     do it, and we remember this situation with a negative size. *)

  let create n =
    if n <= 0 then invalid_arg "create";
    { size = -n; data = [||] }

  let is_empty h = h.size <= 0

  (* [resize] doubles the size of [data] *)

  let resize h =
    let n = h.size in
    assert (n > 0);
    let n' = 2 * n in
    let d = h.data in
    let d' = Array.make n' d.(0) in
    Array.blit d 0 d' 0 n;
    h.data <- d'

  let add h x =
    (* first addition: we allocate the array *)
    if h.size < 0 then begin
      h.data <- Array.make (- h.size) x; h.size <- 0
    end;
    let n = h.size in
    (* resizing if needed *)
    if n == Array.length h.data then resize h;
    let d = h.data in
    (* moving [x] up in the heap *)
    let rec moveup i =
      let fi = (i - 1) / 2 in
      if i > 0 && X.compare d.(fi) x < 0 then begin
	d.(i) <- d.(fi);
	moveup fi
      end else
	d.(i) <- x
    in
    moveup n;
    h.size <- n + 1

  let maximum h =
    if h.size <= 0 then raise EmptyHeap;
    h.data.(0)

  let remove h =
    if h.size <= 0 then raise EmptyHeap;
    let n = h.size - 1 in
    h.size <- n;
    let d = h.data in
    let x = d.(n) in
    (* moving [x] down in the heap *)
    let rec movedown i =
      let j = 2 * i + 1 in
      if j < n then
	let j =
	  let j' = j + 1 in
	  if j' < n && X.compare d.(j') d.(j) > 0 then j' else j
	in
	if X.compare d.(j) x > 0 then begin
	  d.(i) <- d.(j);
	  movedown j
	end else
	  d.(i) <- x
      else
	d.(i) <- x
    in
    movedown 0

  let pop_maximum h = let m = maximum h in remove h; m

  let iter f h =
    let d = h.data in
    for i = 0 to h.size - 1 do f d.(i) done

  let fold f h x0 =
    let n = h.size in
    let d = h.data in
    let rec foldrec x i =
      if i >= n then x else foldrec (f d.(i) x) (succ i)
    in
    foldrec x0 0

end