1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
open! Stdlib
open Code
let debug = Debug.find "inlining"
let times = Debug.find "times"
let stats = Debug.find "stats"
let debug_stats = Debug.find "stats-debug"
let collect_closures p =
let closures = Var.Hashtbl.create 128 in
let rec traverse p enclosing pc =
Code.traverse
{ fold = Code.fold_children }
(fun pc () ->
let block = Addr.Map.find pc p.blocks in
List.iter
~f:(fun i ->
match i with
| Let (f, Closure (params, ((pc', _) as cont), _)) ->
Var.Hashtbl.add closures f (params, cont, enclosing);
traverse p (Some f) pc'
| _ -> ())
block.body)
pc
p.blocks
()
in
traverse p None p.start;
closures
let collect_deps p closures =
let deps = Var.Hashtbl.create (Var.Hashtbl.length closures) in
Var.Hashtbl.iter (fun f _ -> Var.Hashtbl.add deps f (ref Var.Set.empty)) closures;
let traverse p g pc =
let add_dep f =
if Var.Hashtbl.mem closures f
then
let s = Var.Hashtbl.find deps f in
s := Var.Set.add g !s
in
Code.traverse
{ fold = Code.fold_children }
(fun pc () ->
let block = Addr.Map.find pc p.blocks in
Freevars.iter_block_free_vars add_dep block;
List.iter
~f:(fun i ->
match i with
| Let (f, Closure _) -> add_dep f
| _ -> ())
block.body)
pc
p.blocks
()
in
Var.Hashtbl.iter (fun f (_, (pc, _), _) -> traverse p f pc) closures;
Var.Hashtbl.fold (fun f s m -> Var.Map.add f !s m) deps Var.Map.empty
module Var_SCC = Strongly_connected_components.Make (Var)
let visit_closures p ~live_vars f acc =
let closures = collect_closures p in
let deps = collect_deps p closures in
let f' ~recursive acc g =
let params, cont, enclosing_function = Var.Hashtbl.find closures g in
f ~recursive ~enclosing_function ~current_function:(Some g) ~params ~cont acc
in
let rec visit ~recursive deps acc =
let scc = Var_SCC.connected_components_sorted_from_roots_to_leaf deps in
Array.fold_left
scc
~f:(fun acc group ->
match group with
| Var_SCC.No_loop g -> f' ~recursive acc g
| Has_loop l ->
let set = Var.Set.of_list l in
let deps' =
List.fold_left
~f:(fun deps' g ->
Var.Map.add
g
(Var.Set.inter
(if recursive || live_vars.(Var.idx g) > 1
then
let _, _, enclosing = Var.Hashtbl.find closures g in
match enclosing with
| None -> Var.Set.empty
| Some enclosing -> Var.Set.singleton enclosing
else Var.Map.find g deps)
set)
deps')
~init:Var.Map.empty
l
in
visit ~recursive:true deps' acc)
~init:acc
in
let acc = visit ~recursive:false deps acc in
f
~recursive:false
~enclosing_function:None
~current_function:None
~params:[]
~cont:(p.start, [])
acc
module SCC = Strongly_connected_components.Make (Addr)
let blocks_in_loop p pc =
let g =
Code.traverse
{ fold = Code.fold_children }
(fun pc g ->
Addr.Map.add pc (Code.fold_children p.blocks pc Addr.Set.add Addr.Set.empty) g)
pc
p.blocks
Addr.Map.empty
in
let scc = SCC.component_graph g in
Array.fold_left
~f:(fun s (c, _) ->
match c with
| SCC.No_loop _ -> s
| Has_loop l -> List.fold_left ~f:(fun s x -> Addr.Set.add x s) l ~init:s)
~init:Addr.Set.empty
scc
type 'a cache = 'a option ref
type info =
{ f : Var.t
; params : Var.t list
; cont : Code.cont
; enclosing_function : Var.t option
; recursive : bool
; loops : bool cache
; body_size : int cache
; full_size : int cache
; closure_count : int cache
; init_code : int cache
; returns_a_block : bool cache
; interesting_params : (Var.t * int) list cache
}
type context =
{ profile : Profile.t (** Aggressive inlining? *)
; p : program
; live_vars : int array (** Occurence count of all variables *)
; inline_count : int ref (** Inlining statistics *)
; env : info Var.Map.t (** Functions that are candidate for inlining *)
; in_loop : bool Lazy.t (** Whether the current block is in a loop *)
; has_closures : bool Lazy.t ref (** Whether the current function contains closures *)
; current_function : Var.t option (** Name of the current function *)
; enclosing_function : Var.t option
(** Name of the function enclosing the current function *)
}
(** Current context into which we consider inlining some functions. *)
let cache ~info:{ cont = pc, _; _ } ref f =
match !ref with
| Some v -> v
| None ->
let v = f pc in
ref := Some v;
v
(** Does the function contain a loop? *)
let contains_loop ~context info =
cache ~info info.loops (fun pc ->
let rec traverse pc ((visited, loop) as accu) : _ * bool =
if loop
then accu
else if Addr.Map.mem pc visited
then visited, Addr.Map.find pc visited
else
let visited, loop =
Code.fold_children
context.p.blocks
pc
traverse
(Addr.Map.add pc true visited, false)
in
Addr.Map.add pc false visited, loop
in
snd (traverse pc (Addr.Map.empty, false)))
let sum ~context f pc =
let blocks = context.p.blocks in
Code.traverse
{ fold = fold_children }
(fun pc acc -> f (Addr.Map.find pc blocks) + acc)
pc
blocks
0
let rec block_size ~recurse ~context { branch; body; _ } =
List.fold_left
~f:(fun n i ->
match i with
| Event _ -> n
| Let (f, Closure (_, (pc, _), _)) ->
if recurse
then
match Var.Map.find f context.env with
| exception Not_found -> size ~recurse ~context pc + n + 1
| info -> cache ~info info.full_size (size ~recurse:true ~context) + n + 1
else n + 1
| _ -> n + 1)
~init:
(match branch with
| Cond _ | Raise _ -> 2
| Switch (_, a1) -> Array.length a1
| _ -> 0)
body
and size ~recurse ~context = sum ~context (block_size ~recurse ~context)
(** Size of the function body *)
let body_size ~context info = cache ~info info.body_size (size ~recurse:false ~context)
(** Size of the function, including the size of the closures it contains *)
let full_size ~context info = cache ~info info.full_size (size ~recurse:true ~context)
let closure_count_uncached ~context =
sum ~context (fun { body; _ } ->
List.fold_left
~f:(fun n i ->
match i with
| Let (_, Closure _) -> n + 1
| _ -> n)
~init:0
body)
(** Number of closures contained in the function *)
let closure_count ~context info =
cache ~info info.closure_count (closure_count_uncached ~context)
(** Number of instructions in the function which look like
initialization code. *)
let count_init_code ~context info =
cache
~info
info.init_code
(sum ~context
@@ fun { body; _ } ->
List.fold_left
~f:(fun n i ->
match i with
| Let (_, (Closure _ | Field _ | Constant _ | Block _)) -> n + 1
| Let (_, (Apply _ | Prim _ | Special _))
| Assign _ | Set_field _ | Offset_ref _ | Array_set _ | Event _ -> n)
~init:0
body)
(** Whether the function returns a block. *)
let returns_a_block ~context info =
cache ~info info.returns_a_block (fun pc ->
let blocks = context.p.blocks in
Code.traverse
{ fold = fold_children }
(fun pc acc ->
acc
&&
let block = Addr.Map.find pc blocks in
match block.branch with
| Return x -> (
match Code.last_instr block.body with
| Some (Let (x', Block _)) -> Var.equal x x'
| _ -> false)
| Raise _ | Stop | Branch _ | Cond _ | Switch _ | Pushtrap _ | Poptrap _ -> true)
pc
blocks
true)
(** List of parameters that corresponds to functions called once in
the function body. *)
let interesting_parameters ~context info =
let params = info.params in
cache ~info info.interesting_params (fun pc ->
let params = List.filter ~f:(fun x -> context.live_vars.(Var.idx x) = 1) params in
if List.is_empty params
then []
else
let blocks = context.p.blocks in
Code.traverse
{ fold = fold_children }
(fun pc lst ->
let block = Addr.Map.find pc blocks in
List.fold_left
~f:(fun lst i ->
match i with
| Let (_, Apply { f; args; _ }) when List.mem ~eq:Var.equal f params ->
(f, List.length args) :: lst
| _ -> lst)
~init:lst
block.body)
pc
blocks
[])
let functor_like ~context info =
(match Config.target (), context.profile with
| `Wasm, (O2 | O3) -> true
| `Wasm, O1 -> body_size ~context info <= 15
| `JavaScript, (O1 | O2) -> false
| `JavaScript, O3 -> body_size ~context info <= 15)
&& (not info.recursive)
&& (not (contains_loop ~context info))
&& returns_a_block ~context info
&& count_init_code ~context info * 2 > body_size ~context info
&&
full_size ~context info - body_size ~context info <= 20 * closure_count ~context info
let trivial_function ~context info =
body_size ~context info <= 1 && closure_count ~context info = 0
let rec small_function ~context info args =
(not info.recursive)
&& body_size ~context info <= 15
&& closure_count ~context info = 0
&& (not (List.is_empty args))
&& not (Var.Map.is_empty (relevant_arguments ~context info args))
and relevant_arguments ~context info args =
let relevant_params = interesting_parameters ~context info in
List.fold_left2
args
info.params
~f:(fun m arg param ->
if
Var.Map.mem arg context.env
&& List.exists ~f:(fun (p, _) -> Var.equal p param) relevant_params
then
let info' = Var.Map.find arg context.env in
let _, arity = List.find ~f:(fun (p, _) -> Var.equal p param) relevant_params in
if
List.compare_length_with info'.params ~len:arity = 0
&& should_inline
~context:
{ context with
in_loop =
lazy (Lazy.force context.in_loop || contains_loop ~context info)
}
info'
[]
then Var.Map.add param arg m
else m
else m)
~init:Var.Map.empty
and should_inline ~context info args =
(match Config.target (), Config.effects () with
| `JavaScript, (`Disabled | `Cps) ->
closure_count ~context info = 0
|| Option.is_none context.enclosing_function
|| Option.equal Var.equal info.enclosing_function context.current_function
|| (not (Lazy.force !(context.has_closures)))
&& Option.equal Var.equal info.enclosing_function context.enclosing_function
| `Wasm, _ | `JavaScript, `Double_translation -> true
| `JavaScript, `Jspi -> assert false)
&& (functor_like ~context info
|| (context.live_vars.(Var.idx info.f) = 1
&&
match Config.target () with
| `Wasm when Lazy.force context.in_loop ->
body_size ~context info < 30 && not (contains_loop ~context info)
| `JavaScript
when Option.is_none context.current_function && contains_loop ~context info ->
false
| _ -> body_size ~context info < Config.Param.inlining_limit ())
|| trivial_function ~context info
|| small_function ~context info args)
let trace_inlining ~context info x args =
if debug ()
then
let sz = body_size ~context info in
let sz' = full_size ~context info in
Format.eprintf
"%a <- %a%s: %b uses:%d size:%d/%d loop:%b rec:%b closures:%d init:%d \
return_block:%b functor:%b small:%b@."
Var.print
x
Var.print
info.f
(match Var.get_name info.f with
| Some s -> "(" ^ s ^ ")"
| None -> "")
(should_inline ~context info args)
context.live_vars.(Var.idx info.f)
sz
sz'
(contains_loop ~context info)
info.recursive
(closure_count ~context info)
(count_init_code ~context info)
(returns_a_block ~context info)
(functor_like ~context info)
(small_function ~context info args)
let remove_dead_closures_from_block ~live_vars p pc block =
let is_dead_closure i =
match i with
| Let (f, Closure _) ->
let f = Var.idx f in
f < Array.length live_vars && live_vars.(f) = 0
| _ -> false
in
if List.exists ~f:is_dead_closure block.body
then
{ p with
blocks =
Addr.Map.add
pc
{ block with
body =
List.fold_left block.body ~init:[] ~f:(fun acc i ->
match i, acc with
| Event _, Event _ :: prev ->
i :: prev
| _ -> if is_dead_closure i then acc else i :: acc)
|> List.rev
}
p.blocks
}
else p
let remove_dead_closures ~live_vars p pc =
Code.traverse
{ fold = fold_children }
(fun pc p ->
let block = Addr.Map.find pc p.blocks in
remove_dead_closures_from_block ~live_vars p pc block)
pc
p.blocks
p
let rewrite_block pc' pc blocks =
let block = Addr.Map.find pc blocks in
let block =
match block.branch, pc' with
| Return y, Some pc' -> { block with branch = Branch (pc', [ y ]) }
| _ -> block
in
Addr.Map.add pc block blocks
let rewrite_closure blocks cont_pc clos_pc =
Code.traverse
{ fold = Code.fold_children_skip_try_body }
(rewrite_block cont_pc)
clos_pc
blocks
blocks
let rewrite_inlined_function p rem branch x params cont args =
let blocks, cont_pc, free_pc =
match rem, branch with
| [], Return y when Var.equal x y ->
p.blocks, None, p.free_pc
| _ ->
let fresh_addr = p.free_pc in
let free_pc = fresh_addr + 1 in
( Addr.Map.add fresh_addr { params = [ x ]; body = rem; branch } p.blocks
, Some fresh_addr
, free_pc )
in
let blocks = rewrite_closure blocks cont_pc (fst cont) in
let fresh_addr = free_pc in
let free_pc = fresh_addr + 1 in
assert (List.compare_lengths args params = 0);
let blocks =
Addr.Map.add fresh_addr { params; body = []; branch = Branch cont } blocks
in
[], (Branch (fresh_addr, args), { p with blocks; free_pc })
let rec inline_recursively ~context ~info p params (pc, _) args =
let relevant_args = relevant_arguments ~context info args in
if Var.Map.is_empty relevant_args
then p
else
let subst =
List.fold_left2
params
info.params
~f:(fun m param param' ->
if Var.Map.mem param' relevant_args
then Var.Map.add param (Var.Map.find param' relevant_args) m
else m)
~init:Var.Map.empty
in
Code.traverse
{ fold = Code.fold_children }
(fun pc p ->
let block = Addr.Map.find pc p.blocks in
let body, (branch, p) =
List.fold_right
~f:(fun i (rem, state) ->
match i with
| Let (x, Apply { f; args; _ }) when Var.Map.mem f subst ->
let f = Var.Map.find f subst in
inline_function ~context i x f args rem state
| _ -> i :: rem, state)
~init:([], (block.branch, p))
block.body
in
{ p with blocks = Addr.Map.add pc { block with body; branch } p.blocks })
pc
p.blocks
p
and inline_function ~context i x f args rem state =
let info = Var.Map.find f context.env in
let { params; cont; _ } = info in
trace_inlining ~context info x args;
if should_inline ~context info args
then (
let branch, p = state in
incr context.inline_count;
if closure_count ~context info > 0 then context.has_closures := lazy true;
context.live_vars.(Var.idx f) <- context.live_vars.(Var.idx f) - 1;
let p, params, cont =
if context.live_vars.(Var.idx f) > 0
then
let p, _, params, cont = Duplicate.closure p ~f ~params ~cont in
p, params, cont
else p, params, cont
in
let p = inline_recursively ~context ~info p params cont args in
rewrite_inlined_function p rem branch x params cont args)
else i :: rem, state
let inline_in_block ~context pc block p =
let body, (branch, p) =
List.fold_right
~f:(fun i (rem, state) ->
match i with
| Let (x, Apply { f; args; exact = true; _ }) when Var.Map.mem f context.env ->
inline_function ~context i x f args rem state
| _ -> i :: rem, state)
~init:([], (block.branch, p))
block.body
in
{ p with blocks = Addr.Map.add pc { block with body; branch } p.blocks }
let inline ~profile ~inline_count p ~live_vars =
if debug () then Format.eprintf "====== inlining ======@.";
(visit_closures
p
~live_vars
(fun ~recursive
~enclosing_function
~current_function
~params
~cont:((pc, _) as cont)
(context : context)
->
let p = context.p in
let has_closures = ref (lazy (closure_count_uncached ~context pc > 0)) in
let in_loop = lazy (blocks_in_loop p pc) in
let context =
{ context with has_closures; enclosing_function; current_function }
in
let p =
Code.traverse
{ fold = Code.fold_children }
(fun pc p ->
let block = Addr.Map.find pc p.blocks in
if
List.for_all
~f:(fun i ->
match i with
| Let (_, Apply { f; _ }) -> not (Var.Map.mem f context.env)
| _ -> true)
block.body
then p
else
inline_in_block
~context:
{ context with in_loop = lazy (Addr.Set.mem pc (Lazy.force in_loop)) }
pc
block
p)
pc
p.blocks
p
in
let p = remove_dead_closures ~live_vars p pc in
let env =
match current_function with
| Some f ->
Var.Map.add
f
{ f
; params
; cont
; enclosing_function
; recursive
; loops = ref None
; body_size = ref None
; full_size = ref None
; closure_count = ref None
; init_code = ref None
; returns_a_block = ref None
; interesting_params = ref None
}
context.env
| None -> context.env
in
{ context with p; env })
{ profile
; p
; live_vars
; inline_count
; env = Var.Map.empty
; in_loop = lazy false
; has_closures = ref (lazy false)
; current_function = None
; enclosing_function = None
})
.p
let f ~profile p live_vars =
let previous_p = p in
let inline_count = ref 0 in
Code.invariant p;
let t = Timer.make () in
let p = inline ~profile ~inline_count p ~live_vars in
if times () then Format.eprintf " inlining: %a@." Timer.print t;
if stats () then Format.eprintf "Stats - inlining: %d inlined functions@." !inline_count;
if debug_stats ()
then Code.check_updates ~name:"inline" previous_p p ~updates:!inline_count;
let p = Deadcode.remove_unused_blocks p in
Code.invariant p;
p