1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
module type RAW_BASE = sig
val order : Z.t
val size_in_bytes : int
val check_bytes : Bytes.t -> bool
val is_zero : Bytes.t -> bool
val is_one : Bytes.t -> bool
val random : unit -> Bytes.t
val zero : unit -> Bytes.t
val one : unit -> Bytes.t
val add : Bytes.t -> Bytes.t -> Bytes.t
val mul : Bytes.t -> Bytes.t -> Bytes.t
val unsafe_inverse : Bytes.t -> Bytes.t
val eq : Bytes.t -> Bytes.t -> bool
val negate : Bytes.t -> Bytes.t
val square : Bytes.t -> Bytes.t
val double : Bytes.t -> Bytes.t
val pow : Bytes.t -> Bytes.t -> Bytes.t
end
module Make (Stubs : RAW_BASE) : Ff_sig.BASE = struct
type t = Bytes.t
exception Not_in_field of Bytes.t
let order = Stubs.order
let size_in_bytes = Stubs.size_in_bytes
let pad_if_require bs =
if Bytes.length bs < size_in_bytes then (
let padded_bytes = Bytes.make size_in_bytes '\000' in
Bytes.blit bs 0 padded_bytes 0 (Bytes.length bs) ;
padded_bytes )
else Bytes.copy bs
let check_bytes bs =
if Bytes.length bs = size_in_bytes then Stubs.check_bytes bs else false
let of_bytes_opt bs =
let bs = pad_if_require bs in
if check_bytes bs then Some bs else None
let of_bytes_exn (g : Bytes.t) : t =
let g = pad_if_require g in
if check_bytes g then g else raise (Not_in_field g)
let to_bytes g = g
let is_zero g =
assert (Bytes.length g = Stubs.size_in_bytes) ;
Stubs.is_zero g
let is_one g =
assert (Bytes.length g = Stubs.size_in_bytes) ;
Stubs.is_one g
let zero =
let g = Stubs.zero () in
assert (Bytes.length g = Stubs.size_in_bytes) ;
g
let one =
let g = Stubs.one () in
assert (Bytes.length g = Stubs.size_in_bytes) ;
g
let random ?state () =
ignore state ;
let g = Stubs.random () in
assert (Bytes.length g = Stubs.size_in_bytes) ;
g
let rec non_null_random ?state () =
ignore state ;
let r = random () in
if is_zero r then non_null_random () else r
let add x y =
assert (Bytes.length x = Stubs.size_in_bytes) ;
assert (Bytes.length y = Stubs.size_in_bytes) ;
let res = Stubs.add x y in
assert (Bytes.length res = Stubs.size_in_bytes) ;
res
let ( + ) = add
let mul x y =
assert (Bytes.length x = Stubs.size_in_bytes) ;
assert (Bytes.length y = Stubs.size_in_bytes) ;
let res = Stubs.mul x y in
assert (Bytes.length res = Stubs.size_in_bytes) ;
res
let ( * ) = mul
let inverse_exn g =
assert (Bytes.length g = Stubs.size_in_bytes) ;
let res = Stubs.unsafe_inverse g in
assert (Bytes.length res = Stubs.size_in_bytes) ;
res
let inverse_opt g =
assert (Bytes.length g = Stubs.size_in_bytes) ;
if is_zero g then None
else
let res = Stubs.unsafe_inverse g in
assert (Bytes.length res = Stubs.size_in_bytes) ;
Some res
let negate g =
assert (Bytes.length g = Stubs.size_in_bytes) ;
let res = Stubs.negate g in
assert (Bytes.length res = Stubs.size_in_bytes) ;
res
let ( - ) = negate
let sub a b = add a (negate b)
let square g =
assert (Bytes.length g = Stubs.size_in_bytes) ;
let res = Stubs.square g in
assert (Bytes.length res = Stubs.size_in_bytes) ;
res
let double g =
assert (Bytes.length g = Stubs.size_in_bytes) ;
let res = Stubs.double g in
assert (Bytes.length res = Stubs.size_in_bytes) ;
res
let eq x y = Stubs.eq x y
let ( = ) = eq
let pow x n =
let n = Z.erem n (Z.pred Stubs.order) in
let n = Bytes.of_string (Z.to_bits n) in
let bytes_size_n = Bytes.length n in
let padded_n =
Bytes.init Stubs.size_in_bytes (fun i ->
if i < bytes_size_n then Bytes.get n i else char_of_int 0)
in
let res = Stubs.pow (to_bytes x) padded_n in
res
let ( ** ) = pow
let div_exn a b =
if b = zero then raise Division_by_zero else mul a (inverse_exn b)
let div_opt a b = if b = zero then None else Some (mul a (inverse_exn b))
let ( / ) = div_exn
end