1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
module Config = Caqti_pool_config
let default_max_size =
try int_of_string (Sys.getenv "CAQTI_POOL_MAX_SIZE") with Not_found -> 8
let default_log_src = Logs.Src.create "Caqti_platform.Pool"
module type ALARM = sig
type switch
type stdenv
type t
val schedule :
sw: switch ->
stdenv: stdenv ->
Mtime.t -> (unit -> unit) -> t
val unschedule : t -> unit
end
module type S = sig
type switch
type stdenv
include Caqti_pool_sig.S
val create :
?config: Caqti_pool_config.t ->
?check: ('a -> (bool -> unit) -> unit) ->
?validate: ('a -> bool fiber) ->
?log_src: Logs.Src.t ->
sw: switch ->
stdenv: stdenv ->
(unit -> ('a, 'e) result fiber) -> ('a -> unit fiber) ->
('a, 'e) t
end
module Make
(System : System_sig.CORE)
(Alarm : ALARM
with type stdenv := System.stdenv
and type switch := System.Switch.t) =
struct
open System
open System.Fiber.Infix
let (>>=?) m f =
m >>= function Ok x -> f x | Error e -> Fiber.return (Error e)
module Task = struct
type t = {priority: float; semaphore: Semaphore.t}
let wake {semaphore; _} = Semaphore.release semaphore
let compare {priority = pA; _} {priority = pB; _} = Float.compare pB pA
end
module Taskq = Heap.Make (Task)
type 'a entry = {
resource: 'a;
mutable used_count: int;
mutable used_latest: Mtime.t;
}
type ('a, +'e) t = {
stdenv: stdenv;
switch: Switch.t;
create: unit -> ('a, 'e) result Fiber.t;
free: 'a -> unit Fiber.t;
check: 'a -> (bool -> unit) -> unit;
validate: 'a -> bool Fiber.t;
log_src: Logs.Src.t;
max_idle_size: int;
max_idle_age: Mtime.Span.t option;
max_size: int;
max_use_count: int option;
mutable cur_size: int;
queue: 'a entry Queue.t;
mutable waiting: Taskq.t;
mutable alarm: Alarm.t option;
}
let create
?(config = Caqti_pool_config.default)
?(check = fun _ f -> f true)
?(validate = fun _ -> Fiber.return true)
?(log_src = default_log_src)
~sw
~stdenv
create free =
let max_size =
Config.(get max_size) config |> Option.value ~default:default_max_size in
let max_idle_size =
Config.(get max_idle_size) config |> Option.value ~default:max_size in
let max_idle_age =
Config.(get max_idle_age) config |> Option.value ~default:None in
let max_use_count =
Config.(get max_use_count) config |> Option.value ~default:(Some 100) in
assert (max_size > 0);
assert (max_size >= max_idle_size);
assert (Option.fold ~none:true ~some:(fun n -> n > 0) max_use_count);
{
stdenv; switch = sw;
create; free; check; validate; log_src;
max_idle_size; max_size; max_use_count; max_idle_age;
cur_size = 0;
queue = Queue.create ();
waiting = Taskq.empty;
alarm = None;
}
let size {cur_size; _} = cur_size
let wait ~priority pool =
let semaphore = Semaphore.create () in
pool.waiting <- Taskq.push Task.({priority; semaphore}) pool.waiting;
Semaphore.acquire semaphore
let schedule pool =
if not (Taskq.is_empty pool.waiting) then begin
let task, taskq = Taskq.pop_e pool.waiting in
pool.waiting <- taskq;
Task.wake task
end
let realloc pool =
let on_error () =
pool.cur_size <- pool.cur_size - 1;
schedule pool
in
Fiber.cleanup
(fun () ->
pool.create () >|=
(function
| Ok resource ->
Ok {resource; used_count = 0; used_latest = Mtime_clock.now ()}
| Error err -> on_error (); Error err))
(fun () -> on_error (); Fiber.return ())
let rec acquire ~priority pool =
if Queue.is_empty pool.queue then begin
if pool.cur_size < pool.max_size then
begin
pool.cur_size <- pool.cur_size + 1;
realloc pool
end
else
wait ~priority pool >>= fun () ->
acquire ~priority pool
end else begin
let entry = Queue.take pool.queue in
pool.validate entry.resource >>= fun ok ->
if ok then
Fiber.return (Ok entry)
else begin
Log.warn ~src:pool.log_src (fun f ->
f "Dropped pooled connection due to invalidation.") >>= fun () ->
realloc pool
end
end
let can_reuse pool entry =
pool.cur_size <= pool.max_idle_size
&& Option.fold ~none:true ~some:(fun n -> entry.used_count < n)
pool.max_use_count
let rec dispose_expiring pool =
(match pool.max_idle_age, pool.alarm with
| None, None -> ()
| Some _, Some _ -> ()
| None, Some alarm ->
Alarm.unschedule alarm;
pool.alarm <- None
| Some max_idle_age, None ->
let now = Mtime_clock.now () in
let rec loop () =
(match Queue.peek_opt pool.queue with
| None -> ()
| Some entry ->
(match Mtime.add_span entry.used_latest max_idle_age with
| None ->
Logs.warn ~src:pool.log_src (fun f -> f
"Cannot schedule pool expiration check due to \
Mtime overflow.")
| Some expiry ->
if Mtime.compare now expiry >= 0 then
begin
let entry = Queue.take pool.queue in
pool.cur_size <- pool.cur_size - 1;
async ~sw:pool.switch
(fun () -> pool.free entry.resource);
loop ()
end
else
pool.alarm <- Option.some @@
Alarm.schedule
~sw:pool.switch ~stdenv:pool.stdenv expiry
begin fun () ->
pool.alarm <- None;
dispose_expiring pool
end))
in
loop ())
let release pool entry =
if not (can_reuse pool entry) then begin
pool.cur_size <- pool.cur_size - 1;
pool.free entry.resource >|= fun () ->
schedule pool
end else begin
pool.check entry.resource begin fun ok ->
if ok then
begin
entry.used_latest <- Mtime_clock.now ();
Queue.add entry pool.queue;
dispose_expiring pool
end
else
begin
Logs.warn ~src:pool.log_src (fun f ->
f "Will not repool connection due to invalidation.");
pool.cur_size <- pool.cur_size - 1
end;
schedule pool
end;
Fiber.return ()
end
let use ?(priority = 0.0) f pool =
acquire ~priority pool >>=? fun entry ->
Fiber.finally
(fun () -> f entry.resource)
(fun () -> entry.used_count <- entry.used_count + 1; release pool entry)
let rec drain pool =
if pool.cur_size = 0 then
begin
pool.alarm |> Option.iter begin fun alarm ->
Alarm.unschedule alarm;
pool.alarm <- None
end;
Fiber.return ()
end
else
(match Queue.take_opt pool.queue with
| None -> wait ~priority:0.0 pool
| Some entry ->
pool.cur_size <- pool.cur_size - 1;
pool.free entry.resource) >>= fun () ->
drain pool
end
module No_alarm = struct
type t = unit
let schedule ~sw:_ ~stdenv:_ _ _ = ()
let unschedule _ = ()
end
module Make_without_alarm (System : System_sig.CORE) = Make (System) (No_alarm)