1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
include Lang_core
type scalar = X of S.t
type input_kind = [`InputCom | `Public | `Private]
type trace_kind = [input_kind | `NoInput]
type 'a repr =
| U : unit repr
| S : scalar -> scalar repr
| B : bool -> bool repr
| P : 'a repr * 'b repr -> ('a * 'b) repr
| L : 'a repr list -> 'a list repr
type state = bool repr list
type 'a t = state -> state * 'a
let ret x s = (s, x)
let ( let* ) m f s =
let s, o = m s in
f o s
let ( >* ) m f =
let* U = m in
f
let rec mapM f ls =
match ls with
| [] -> ret @@ []
| l :: ls ->
let* o = f l in
let* rest = mapM f ls in
ret @@ (o :: rest)
let with_bool_check : bool repr t -> unit repr t =
fun check s ->
let s, b = check s in
(b :: s, U)
module Input = struct
type 'a implicit_check = 'a repr -> unit repr t
type 'a t' = 'a repr
type 'a input = 'a t' * 'a implicit_check
type 'a t = 'a input
let default_check _ = ret U
let s x : scalar t' = S (X x)
let scalar x = (s x, default_check)
let to_scalar (S (X x), _) = x
let bool b = (B b, default_check)
let to_bool (B b, _) = b
let unit = (U, default_check)
let pair : 'a t -> 'b t -> ('a * 'b) t =
fun (a, check_a) (b, check_b) ->
(P (a, b), fun (P (ar, br)) -> check_a ar >* check_b br)
let to_pair (P (a, b), _) = ((a, default_check), (b, default_check))
let list : 'a t list -> 'a list t =
fun l ->
( L (List.map fst l),
fun (L lr) ->
let* _l =
mapM (fun ((_, asssertion), r) -> asssertion r) (List.combine l lr)
in
ret U )
let to_list (L l, _) = List.map (fun i -> (i, default_check)) l
let with_implicit_bool_check bc (i, a) =
(i, fun repr -> a repr >* with_bool_check (bc repr))
let with_assertion na (i, a) = (i, fun repr -> a repr >* na repr)
end
let rec encode : type a. a Input.t' -> S.t list =
fun input ->
match input with
| U -> []
| S (X s) -> [s]
| B b -> if b then [S.one] else [S.zero]
| P (l, r) -> encode l @ encode r
| L l -> List.concat_map encode l
let serialize i = Array.of_list @@ encode (fst i)
let rec eq : type a. a repr -> a repr -> bool =
fun a b ->
match (a, b) with
| S (X a), S (X b) -> S.eq a b
| B a, B b -> a = b
| P (al, ar), P (bl, br) -> eq al bl && eq ar br
| L l1, L l2 -> List.for_all2 eq l1 l2
| U, U -> true
let input : type a. ?kind:input_kind -> a Input.t -> a repr t =
fun ?(kind = `Private) (input, check) ->
ignore kind ;
check input >* ret input
let new_input_com : unit repr t = fun s -> (s, U)
type 'b open_input_com = 'b t
let begin_input_com : 'b -> 'b open_input_com = fun b -> new_input_com >* ret b
let ( |: ) :
type c d. (c repr -> d) open_input_com -> c Input.t -> d open_input_com =
fun v i s ->
let s, f = v s in
let s, r = (input ~kind:`InputCom i) s in
(s, f r)
let end_input_com : 'a open_input_com -> 'a t = Fun.id
let to_list l = L l
let of_list (L l) = l
let of_pair (P (l, r)) = (l, r)
let pair l r = P (l, r)
let unit = U
let of_s (S (X s)) = s
let map2 f x y = X (f x y)
let rec foldM f e l =
match l with
| [] -> ret e
| x :: xs ->
let* y = f e x in
foldM f y xs
let scalar_of_bool (B b) = if b then S (X S.one) else S (X S.zero)
let constant_scalar x = ret @@ Input.s x
let unsafe_bool_of_scalar (S (X s)) = if S.(eq s one) then B true else B false
module Num = struct
type nonrec scalar = scalar
type nonrec 'a repr = 'a repr
type nonrec 'a t = 'a t
let assert_nonzero sx =
let x = of_s sx in
assert (not S.(x = zero)) ;
ret U
let is_zero (S (X x)) = ret @@ B S.(x = zero)
let is_not_zero (S (X x)) = ret @@ B (not S.(x = zero))
let custom ?(qc = S.zero) ?(ql = S.zero) ?(qr = S.zero) ?(qo = S.mone)
?(qm = S.zero) ?(qx2b = S.zero) ?(qx5a = S.zero) sl sr =
let l, r = (of_s sl, of_s sr) in
let o =
S.(
((ql * l) + (qr * r)
+ (qm * l * r)
+ qc
+ (qx2b * r * r)
+ (qx5a * l * l * l * l * l))
/ negate qo)
in
ret @@ S (X o)
let assert_custom ?(qc = S.zero) ?(ql = S.zero) ?(qr = S.zero) ?(qo = S.zero)
?(qm = S.zero) sl sr so =
let l, r, o = (of_s sl, of_s sr, of_s so) in
let o = S.((ql * l) + (qr * r) + (qo * o) + (qm * l * r) + qc) in
assert (S.(o = zero)) ;
ret U
let assert_bool (S (X l)) =
assert (S.(l = zero || l = one)) ;
ret U
let add ?(qc = S.zero) ?(ql = S.one) ?(qr = S.one) sl sr =
let l, r = (of_s sl, of_s sr) in
let o = S.((ql * l) + (qr * r) + qc) in
ret @@ S (X o)
let sub sl sr =
let l, r = (of_s sl, of_s sr) in
ret @@ S (map2 S.sub l r)
let mul ?(qm = S.one) sl sr =
let l, r = (of_s sl, of_s sr) in
let lr = S.mul l r in
ret @@ S (map2 S.mul qm lr)
let add_constant ?(ql = S.one) k sl =
let l = of_s sl in
let o = S.(k + (ql * l)) in
ret @@ S (X o)
let div ?(den_coeff = S.one) sl sr =
let l, r = (of_s sl, of_s sr) in
assert (not S.(is_zero r)) ;
assert (not S.(is_zero den_coeff)) ;
let qmr = S.mul den_coeff r in
ret @@ S (map2 S.div_exn l qmr)
let pow5 sl =
let l = of_s sl in
ret @@ S (X S.(pow l (Z.of_int 5)))
end
module Bool = struct
include Num
let s_of_b b = if b then X S.one else X S.zero
let assert_true (B b) =
assert b ;
ret U
let assert_false (B b) =
assert (not b) ;
ret U
let constant_bool : bool -> bool repr t = fun b -> ret (B b)
let band (B l) (B r) = ret @@ B (l && r)
let xor (B l) (B r) =
let o =
match (l, r) with
| true, true -> false
| false, true -> true
| true, false -> true
| false, false -> false
in
ret @@ B o
let bor (B l) (B r) = ret @@ B (l || r)
let bor_lookup (B l) (B r) = bor (B l) (B r)
let bnot (B b) = ret @@ B (not b)
let ifthenelse (B b) l r = if b then ret l else ret r
let swap (B b) l r = if b then ret @@ pair r l else ret @@ pair l r
let band_list l : bool repr t =
ret @@ List.fold_left (fun (B a) (B b) -> B (a && b)) (B true) l
end
let point x y = P (S (X x), S (X y))
let of_point (P (S (X x), S (X y))) = (x, y)
module Ecc = struct
let weierstrass_add p1 p2 =
let module W = Mec.Curve.Jubjub.AffineWeierstrass in
let x1, y1 = of_point p1 in
let x2, y2 = of_point p2 in
let s_to_base s = W.Base.of_z (S.to_z s) in
let s_of_base s = S.of_z (W.Base.to_z s) in
let p1 = W.from_coordinates_exn ~x:(s_to_base x1) ~y:(s_to_base y1) in
let p2 = W.from_coordinates_exn ~x:(s_to_base x2) ~y:(s_to_base y2) in
let p3 = W.add p1 p2 in
ret
@@ point
(s_of_base @@ W.get_x_coordinate p3)
(s_of_base @@ W.get_y_coordinate p3)
let edwards_add p1 p2 =
let module W = Mec.Curve.Jubjub.AffineEdwards in
let x1, y1 = of_point p1 in
let x2, y2 = of_point p2 in
let s_to_base s = W.Base.of_z (S.to_z s) in
let s_of_base s = S.of_z (W.Base.to_z s) in
let p1 = W.from_coordinates_exn ~u:(s_to_base x1) ~v:(s_to_base y1) in
let p2 = W.from_coordinates_exn ~u:(s_to_base x2) ~v:(s_to_base y2) in
let p3 = W.add p1 p2 in
ret
@@ point
(s_of_base @@ W.get_u_coordinate p3)
(s_of_base @@ W.get_v_coordinate p3)
let edwards_cond_add p1 p2 (B b) =
let module W = Mec.Curve.Jubjub.AffineEdwards in
let x1, y1 = of_point p1 in
let x2, y2 = of_point p2 in
let s_to_base s = W.Base.of_z (S.to_z s) in
let s_of_base s = S.of_z (W.Base.to_z s) in
let p1 = W.from_coordinates_exn ~u:(s_to_base x1) ~v:(s_to_base y1) in
let p2 = W.from_coordinates_exn ~u:(s_to_base x2) ~v:(s_to_base y2) in
let p3 = W.add p1 p2 in
let out = if b then p3 else p1 in
ret
@@ point
(s_of_base @@ W.get_u_coordinate out)
(s_of_base @@ W.get_v_coordinate out)
end
module Poseidon = struct
module VS = Linear_algebra.Make_VectorSpace (S)
let poseidon128_full_round ~matrix ~k ~variant:_ (x0, x1, x2) =
let pow5 x = S.pow (of_s x) (Z.of_int 5) in
let x_vec = [|Array.map pow5 [|x0; x1; x2|]|] |> VS.transpose in
let y_vec = VS.mul matrix x_vec in
let y0 = S.add k.(0) @@ y_vec.(0).(0) in
let y1 = S.add k.(1) @@ y_vec.(1).(0) in
let y2 = S.add k.(2) @@ y_vec.(2).(0) in
ret @@ to_list [S (X y0); S (X y1); S (X y2)]
let poseidon128_four_partial_rounds ~matrix ~ks ~variant:_ (x0, x1, x2) =
let k0 = VS.filter_cols (Int.equal 0) ks in
let k1 = VS.filter_cols (Int.equal 1) ks in
let k2 = VS.filter_cols (Int.equal 2) ks in
let k3 = VS.filter_cols (Int.equal 3) ks in
let ppow5 v = [|v.(0); v.(1); [|S.pow v.(2).(0) (Z.of_int 5)|]|] in
let x_vec = [|[|of_s x0; of_s x1; of_s x2|]|] |> VS.transpose in
let a_vec = VS.(add (mul matrix @@ ppow5 x_vec) k0) in
let b_vec = VS.(add (mul matrix @@ ppow5 a_vec) k1) in
let c_vec = VS.(add (mul matrix @@ ppow5 b_vec) k2) in
let y_vec = VS.(add (mul matrix @@ ppow5 c_vec) k3) in
ret
@@ to_list [S (X y_vec.(0).(0)); S (X y_vec.(1).(0)); S (X y_vec.(2).(0))]
end
module Anemoi = struct
module AnemoiPerm = Bls12_381_hash.Permutation.Anemoi
let beta = S.of_string (Bls12_381.Fr.to_string AnemoiPerm.Parameters.beta)
let gamma = S.of_string (Bls12_381.Fr.to_string AnemoiPerm.Parameters.gamma)
let g = S.of_string (Bls12_381.Fr.to_string AnemoiPerm.Parameters.g)
let delta = S.of_string (Bls12_381.Fr.to_string AnemoiPerm.Parameters.delta)
let alpha_inv =
S.of_string (Bls12_381.Fr.to_string AnemoiPerm.Parameters.alpha_inv)
let anemoi_round ~kx ~ky (x0, y0) =
let x0 = of_s x0 in
let y0 = of_s y0 in
let g2_p_1 = S.((g * g) + one) in
let w_5 = S.(sub x0 ((beta * y0 * y0) + gamma)) in
let w = S.(pow w_5 (to_z alpha_inv)) in
let v = S.sub y0 w in
let u = S.(w_5 + ((beta * v * v) + delta)) in
let x1 = S.(u + kx + (g * (v + ky))) in
let y1 = S.((g * (u + kx)) + (g2_p_1 * (v + ky))) in
ret @@ pair (S (X x1)) (S (X y1))
let anemoi_double_round ~kx1 ~ky1 ~kx2 ~ky2 (x0, y0) =
let* res1 = anemoi_round ~kx:kx1 ~ky:ky1 (x0, y0) in
let x1, y1 = of_pair res1 in
let* res2 = anemoi_round ~kx:kx2 ~ky:ky2 (x1, y1) in
let x2, y2 = of_pair res2 in
ret @@ pair x2 y2
let anemoi_custom = anemoi_double_round
end
let hd (L l) = match l with [] -> assert false | x :: _ -> ret x
let assert_equal l r =
assert (eq l r) ;
ret U
let equal : type a. a repr -> a repr -> bool repr t =
fun l r -> ret @@ B (eq l r)
let bits_of_scalar ?(shift = Z.zero) ~nb_bits sx =
let x = of_s sx |> S.to_z in
let x = Z.add shift x in
let sx = S (X (S.of_z x)) in
let binary_decomposition = Utils.bool_list_of_z ~nb_bits x in
let bits = L (List.map (fun x -> B x) binary_decomposition) in
let powers = List.init nb_bits (fun i -> S.of_z Z.(pow (of_int 2) i)) in
let sbits = List.map scalar_of_bool (of_list bits) in
let* sum =
foldM
(fun acc (qr, w) -> Num.add ~qr acc w)
(List.hd sbits)
List.(tl @@ combine powers sbits)
in
with_bool_check (equal sx sum) >* ret bits
let of_b (B x) = x
let get_checks_wire : bool repr t =
fun s -> ([], B (List.for_all (fun (B x) -> x) s))
let init_state = []
let with_label ~label t =
ignore label ;
t
let get_result : 'a repr t -> 'a Input.t =
fun m ->
let s, r = m init_state in
let c = List.fold_left (fun a b -> a && b) true (List.map of_b s) in
assert c ;
(r, Input.default_check)