Source file range_check_gate.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
open Bls
open Utils
open Identities
module type S = sig
module PP : Polynomial_protocol.S
val batched_z_name : string
val build_permutation :
range_checks:int list * int -> size_domain:int -> int array
val preprocessing :
permutation:int array ->
range_checks:'a list * int ->
domain:Domain.t ->
Poly.t SMap.t
val f_map_contribution_1 :
range_checks:int list * int ->
domain:Domain.t ->
values:Evaluations.t SMap.t ->
Evaluations.t * Poly.t SMap.t
val f_map_contribution_2 :
permutation:int array ->
beta:Poly.scalar ->
gamma:Poly.scalar ->
domain:Domain.t ->
values:Evaluations.t SMap.t ->
Poly.t SMap.t
val prover_identities_1 :
?circuit_prefix:(string -> string) ->
proof_prefix:(string -> string) ->
domain_size:int ->
unit ->
prover_identities
val prover_identities_2 :
?circuit_prefix:(string -> string) ->
beta:Scalar.t ->
gamma:Scalar.t ->
domain_size:int ->
unit ->
prover_identities
val verifier_identities_1 :
?circuit_prefix:(string -> string) ->
proof_prefix:(string -> string) ->
unit ->
Scalar.t ->
Scalar.t SMap.t SMap.t ->
Scalar.t SMap.t
val verifier_identities_2 :
?circuit_prefix:(string -> string) ->
nb_proofs:int ->
beta:Scalar.t ->
gamma:Scalar.t ->
delta:Scalar.t ->
domain_size:int ->
generator:Scalar.t ->
unit ->
verifier_identities
end
module Range_check_gate_impl (PP : Polynomial_protocol.S) = struct
module PP = PP
exception Too_many_checks of string
let lnin1 = "Lni_plus_n_minus_1"
let pnin1 = "Pni_plus_n_minus_1"
let z_name = "RC_Z"
let rc_prefix = "RC_"
let wire = Plompiler.Csir.wire_name 0
let batched_wire = String.capitalize_ascii wire
let batched_z_name = "RC_Z_BATCHED"
type public_parameters = Poly.t SMap.t
let zero, one, two = Scalar.(zero, one, one + one)
let mone, mtwo = Scalar.(negate one, negate two)
let find l x =
let rec aux i = function
| [] -> -1
| h :: t -> if x = h then i else aux (i + 1) t
in
aux 0 l
let build_permutation ~range_checks:(rc, up_bound) ~size_domain =
let get_safe l i =
try size_domain + List.nth l (i / up_bound) with _ -> i
in
if rc = [] then [||]
else
let fst =
Array.init size_domain (fun i ->
if i mod up_bound = 0 then get_safe rc i else i)
in
let snd =
Array.init size_domain (fun i ->
match find rc i with -1 -> size_domain + i | j -> j * up_bound)
in
Array.append fst snd
module Permutation = struct
module Perm = Permutation_gate.Permutation_gate (PP)
let external_prefix = rc_prefix
let preprocessing ~permutation ~domain =
Perm.preprocessing ~external_prefix ~domain ~permutation ~nb_wires:2 ()
let f_map_contribution ~permutation ~beta ~gamma ~domain
~values:batched_values =
let values =
SMap.of_list
[
(batched_wire, SMap.find batched_wire batched_values);
(batched_z_name, SMap.find batched_z_name batched_values);
]
in
Perm.f_map_contribution
~external_prefix
~permutation
~values
~beta
~gamma
~domain
()
let prover_identities ?(circuit_prefix = Fun.id) ~beta ~gamma ~domain_size
() =
Perm.prover_identities
~external_prefix
~circuit_prefix
~wires_names:[batched_z_name; batched_wire]
~beta
~gamma
~n:domain_size
()
let verifier_identities ?(circuit_prefix = Fun.id) ~nb_proofs ~beta ~gamma
~delta ~domain_size ~generator () =
Perm.verifier_identities
~external_prefix
~circuit_prefix
~nb_proofs
~generator
~n:domain_size
~wires_names:[z_name; wire]
~beta
~gamma
~delta
()
end
module RangeChecks = struct
let assert_not_too_many_checks k nb =
if k < nb then
raise
(Too_many_checks
(Printf.sprintf "%d checks asked, %d checks expected" nb k))
let compute_pnin1 upper_bound domain domain_size =
let x_w i =
Poly.of_coefficients
[(one, 1); (Scalar.negate (Domain.get domain i), 0)]
in
let k = domain_size / upper_bound in
let rec aux res = function
| 0 -> res
| i -> aux (Poly.mul res (x_w ((upper_bound * i) - 1))) (i - 1)
in
aux Poly.one k
let preprocessing ~range_checks:(idx, upper_bound) ~domain =
if Z.(log2up (of_int upper_bound)) <> Z.(log2 (of_int upper_bound)) then
failwith "upper_bound must be a power of two." ;
if idx = [] then SMap.empty
else
let domain_size = Domain.length domain in
let lnin1_poly =
Array.init domain_size (fun i ->
if i mod upper_bound = upper_bound - 1 then one else zero)
|> Evaluations.interpolation_fft2 domain
in
let pnin1_poly = compute_pnin1 upper_bound domain domain_size in
SMap.of_list [(lnin1, lnin1_poly); (pnin1, pnin1_poly)]
let get_checks_from_wire k check_indices wire =
let checks = List.map (Evaluations.get wire) check_indices in
checks @ List.(init (k - length checks) (Fun.const Scalar.zero))
let partial_z up x =
let x = Scalar.to_z x in
let rec aux gwi = function
| 1 -> gwi
| i ->
let q = Z.(div (List.hd gwi) (one + one)) in
aux (q :: gwi) (i - 1)
in
let res = aux [x] up in
res |> List.rev_map Scalar.of_z
let build_z_evals domain up k check_indices values =
let checks = get_checks_from_wire k check_indices values in
let all_evals = List.concat_map (partial_z up) checks |> Array.of_list in
let evals =
Array.(
append
all_evals
(init
(Domain.length domain - length all_evals)
(Fun.const Scalar.zero)))
in
Evaluations.of_array (Array.length evals - 1, evals)
let compute_Z domain up k check_indices values =
let evals = build_z_evals domain up k check_indices values in
(evals, Evaluations.interpolation_fft domain evals)
let f_map_contribution ~range_checks:(check_indices, upper_bound) ~domain
~values =
let wire = SMap.find wire values in
let nb_range_checks = List.length check_indices in
let k = Domain.length domain / upper_bound in
assert_not_too_many_checks k nb_range_checks ;
let evals, z = compute_Z domain upper_bound k check_indices wire in
(evals, SMap.of_list [(z_name, z)])
let prover_identities ?(circuit_prefix = Fun.id) ~proof_prefix:prefix
~domain_size:n () evaluations =
let z_evaluation =
Evaluations.find_evaluation evaluations (prefix z_name)
in
let z_evaluation_len = Evaluations.length z_evaluation in
let tmp_evaluation = Evaluations.create z_evaluation_len in
let tmp2_evaluation = Evaluations.create z_evaluation_len in
let idrca_evaluation = Evaluations.create z_evaluation_len in
let idrcb_evaluation = Evaluations.create z_evaluation_len in
let identity_rca =
let lnin1_evaluation =
Evaluations.find_evaluation evaluations (circuit_prefix lnin1)
in
let one_m_z_evaluation =
Evaluations.linear_c
~res:tmp_evaluation
~linear_coeffs:[mone]
~evaluations:[z_evaluation]
~add_constant:one
()
in
Evaluations.mul_c
~res:idrca_evaluation
~evaluations:[z_evaluation; one_m_z_evaluation; lnin1_evaluation]
()
in
let identity_rcb =
let pnin1_evaluation =
Evaluations.find_evaluation evaluations (circuit_prefix pnin1)
in
let z_min_2Zg_evaluation =
Evaluations.linear_c
~res:tmp_evaluation
~linear_coeffs:[one; mtwo]
~composition_gx:([0; 1], n)
~evaluations:[z_evaluation; z_evaluation]
()
in
let one_m_Z_p_2Zg_evaluation =
Evaluations.linear_c
~res:tmp2_evaluation
~linear_coeffs:[mone]
~evaluations:[z_min_2Zg_evaluation]
~add_constant:one
()
in
Evaluations.mul_c
~res:idrcb_evaluation
~evaluations:
[z_min_2Zg_evaluation; one_m_Z_p_2Zg_evaluation; pnin1_evaluation]
()
in
SMap.of_list
[(prefix "RC.a", identity_rca); (prefix "RC.b", identity_rcb)]
let verifier_identities ?(circuit_prefix = Fun.id) ~proof_prefix:prefix ()
_x answers =
let z = get_answer answers X (prefix z_name) in
let zg = get_answer answers GX (prefix z_name) in
let lnin1 = get_answer answers X (circuit_prefix lnin1) in
let pnin1 = get_answer answers X (circuit_prefix pnin1) in
let identity_rca = Scalar.(z * (one + negate z) * lnin1) in
let identity_rcb =
Scalar.((z + (mtwo * zg)) * (one + negate z + (two * zg)) * pnin1)
in
SMap.of_list
[(prefix "RC.a", identity_rca); (prefix "RC.b", identity_rcb)]
end
let preprocessing ~permutation ~range_checks ~domain =
if fst range_checks = [] then SMap.empty
else
let rc = RangeChecks.preprocessing ~range_checks ~domain in
let perm = Permutation.preprocessing ~permutation ~domain in
SMap.union_disjoint rc perm
let f_map_contribution_1 = RangeChecks.f_map_contribution
let f_map_contribution_2 = Permutation.f_map_contribution
let prover_identities_1 = RangeChecks.prover_identities
let prover_identities_2 = Permutation.prover_identities
let verifier_identities_1 = RangeChecks.verifier_identities
let verifier_identities_2 = Permutation.verifier_identities
end
module Range_check_gate (PP : Polynomial_protocol.S) : S with module PP = PP =
Range_check_gate_impl (PP)