Source file qrc.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
(*---------------------------------------------------------------------------
   Copyright (c) 2020 The qrc programmers. All rights reserved.
   SPDX-License-Identifier: ISC
  ---------------------------------------------------------------------------*)

(* Any mention of section, figure or table refers to the ISO/IEC 18004:2015(E)
   standard. *)

let div_round_up x y = (x + y - 1) / y

(* Sequences of bytes. We use bigarrays to get typed array in js_of_ocaml *)

module Bytes = struct
  type t = (int,Bigarray.int8_unsigned_elt,Bigarray.c_layout) Bigarray.Array1.t
  let _create len = Bigarray.(Array1.create int8_unsigned c_layout len)
  let create ~len v = let a = _create len in Bigarray.Array1.fill a v; a
  let length b = Bigarray.Array1.dim b
  let get = (Bigarray.Array1.get : t -> int -> int)
  let set = (Bigarray.Array1.set : t -> int -> int -> unit)
  let copy b = let c = _create (length b) in Bigarray.Array1.blit b c; c
  let blit ~src si ~dst di ~len =
    let src = Bigarray.Array1.sub src si len in
    let dst = Bigarray.Array1.sub dst di len in
    Bigarray.Array1.blit src dst
end

(* Sequences of bits. *)

module Bits = struct
  type t = Bytes.t
  let create len v =
    Bytes.create ~len:(div_round_up len 8) (if v then 255 else 0)

  let length b = (Bytes.length b) * 8
  let copy = Bytes.copy
  let[@inline] get bits i =
    let i_byte = i / 8 in
    let bit_mask = 1 lsl (7 - i mod 8) in
    (Bytes.get bits i_byte) land bit_mask > 0

  let[@inline] set bits i v =
    let i_byte = i / 8 in
    let byte = Bytes.get bits i_byte in
    let bit_mask = 1 lsl (7 - i mod 8) in
    let byte' = if v then byte lor bit_mask else byte land (lnot bit_mask) in
    Bytes.set bits i_byte byte'
end

(* Galois fields and Reed-Solomon encoding

   Follows the treatement found at https://research.swtch.com/field, see also
   https://en.wikipedia.org/wiki/Finite_field_arithmetic#Implementation_tricks*)
module Gf_256 = struct
  type poly = int
  type byte = int
  type t =
    { log : byte array; (* 256 els *)
      exp : byte array; (* 510 els, twice the same data to avoid mod in mul *) }

  let mul x y ~mod' = (* slow, only used to generate the exp table *)
    let z = ref 0 and x = ref x and y = ref y in
    while (!x > 0) do
      if !x land 1 = 1 then z := !z lxor !y; (* add *)
      x := !x lsr 1;
      y := !y lsl 1;
      if !y land 0x100 <> 0 then (* exceeds deg 7 *) y := !y lxor mod' (* sub *)
    done;
    !z

  let create ~r ~g =
    let f = { log = Array.make 256 0; exp = Array.make 510 0 } in
    let x = ref 1 (* g ^ 0 *) in
    for i = 0 to 254 do
      (* The exp table is doubled to avoid a mod 255 in mul below *)
      f.exp.(i) <- !x; f.exp.(i + 255) <- !x;
      f.log.(!x) <- i;
      x := mul !x g ~mod':r
    done;
    f.log.(0) <- 255;
    f

  let[@inline] add x y = x lxor y
  let[@inline] sub x y = x lxor y
  let[@inline] exp f x = f.exp.(x mod 255)
  let[@inline] log f x = f.log.(x)
  let[@inline] inv f x = if x = 0 then 0 else f.exp.(255 - f.log.(x))
  let[@inline] mul f x y =
    if x = 0 || y = 0 then 0 else f.exp.(f.log.(x) + f.log.(y))
end

module Rs = struct
  type gen = int array (* Generator polynomial coefficients (hi to lo). *)

  (* Generates a polynomial for [ec] error correction bytes. Given [g] the
     generator of [f] this computes the coefficients of the polynomial:
     gen(x) = (x - g^0)(x - g^1)(x - g^ec) *)
  let gen f ~ec : gen =
    let gen = Array.make (ec + 1) 0 in
    gen.(ec) <- 1; (* gen := 1 *)
    for i = 0 to ec - 1 do (* do gen := gen * (x - g^i) *)
      let gi = Gf_256.exp f i in
      for j = 0 to ec - 1 do
        gen.(j) <- Gf_256.sub gen.(j + 1) (Gf_256.mul f gen.(j) gi)
      done;
      gen.(ec) <- Gf_256.mul f gen.(ec) gi (* g^0 * g^1 * ... * g^ec *)
    done;
    gen

  (* The following function computes the remainder of [p], the message
     padded with [ec] zero bytes, divided by [gen] by repeatedly
     subtracting multiples of [gen].

    let encode f ~ec ~gen p =
      for i = 0 to Bytes.length p - ec - 1 (* iterate on message bytes *) do
        (* do p := p - (p.(i) / gen.(0)) * gen  *)
        let k = Gf_256.mul f (Bytes.get p i) (Gf_256.inv f gen.(0)) in
        for j = 0 to Array.length gen - 1 do
          let ci = i + j in
          let c = Bytes.get p ci in
          Bytes.set p ci (Gf_256.sub c (Gf_256.mul f k gen.(j)))
        done
      done

     If we shortcut when [pi = 0] and [gen.(j) = 0], note that gen.(0) is
     always 1, inline definitions and simplify we get to the different
     more efficient function below, which works directly on the log
     of [gen]'s coefficients. *)

  let log_gen f ~ec =
    let gen = gen f ~ec in
    for i = 0 to ec do gen.(i) <- Gf_256.log f gen.(i) done;
    gen

  let encode (f : Gf_256.t) ~ec ~log_gen p =
    for i = 0 to Bytes.length p - ec - 1 do
      let pi = Bytes.get p i in
      if pi = 0 then () else
      let log_k = f.log.(pi) in
      for j = 0 to Array.length log_gen - 1 do
        let log_genj = log_gen.(j) in
        if log_genj = 255 (* => gen.(j) = 0 *) then () else
        let ci = i + j in
        let c = Bytes.get p ci in
        Bytes.set p ci (Gf_256.sub c (f.exp.(log_k + log_genj)))
      done
    done
end

(* QR matrices *)

module Matrix = struct
  type bits = Bits.t
  type t = { w : int; bits : bits; }
  let zero ~w = let bits = Bits.create (w * w) false in { w; bits }
  let copy m = { m with bits = Bits.copy m.bits }
  let of_bits ~w bits =
    let len = div_round_up (w * w) 8 in
    if Bits.length bits >= len then { w; bits } else
    invalid_arg "Not enough bits provided"

  let w m = m.w
  let bits m = m.bits
  let[@inline] get m ~x ~y = Bits.get m.bits ((y * m.w) + x)
  let[@inline] _set m ~x ~y v = Bits.set m.bits ((y * m.w) + x) v
  let[@inline] set m ~x ~y = _set m ~x ~y true
  let[@inline] clear m ~x ~y = _set m ~x ~y false
  let fold f m acc =
    let acc = ref acc in
    for y = 0 to m.w - 1 do
      for x = 0 to m.w - 1 do acc := f x y (get m ~x ~y) !acc done
    done;
    !acc

  let set_square_frame m ~x ~y (* top-left corner *) ~w =
    let xmin = x and ymin = y and xmax = x + w - 1 and ymax = y + w - 1 in
    for x = xmin to xmax do set m ~x ~y:ymin done; (* top seg *)
    for x = xmin to xmax do set m ~x ~y:ymax done; (* bot seg *)
    for y = ymin + 1 to ymax - 1 do set m ~x:xmin ~y done; (* left seg *)
    for y = ymin + 1 to ymax - 1 do set m ~x:xmax ~y done (* right seg *)

  let to_svg ?(w_mm = 50) ?(invert = false) ?(quiet_zone = true) m =
    let w_mm = string_of_int w_mm in
    let w = string_of_int @@ if quiet_zone then m.w + 8 else m.w in
    let on, off = if invert then "white", "black" else "black", "white" in
    let ( ++ ) acc d = d :: acc in
    let acc =
      [] ++ "<svg xmlns='http://www.w3.org/2000/svg' version='1.1' " ++
      "width='" ++ w_mm ++ "mm' " ++ "height='" ++ w_mm ++ "mm' " ++
      "viewBox='0 0 " ++ w ++ " " ++ w ++ "'>\n" ++
      " <rect width='" ++ w ++ "' height='" ++ w ++ "' fill='" ++ off ++
      "'/>" ++ " <path fill='" ++ on ++ "' d='"
    in
    let on ~x ~y acc =
      acc ++ "\n M " ++ string_of_int x ++ "," ++
      string_of_int y ++ " l 1,0 0,1 -1,0 z"
    in
    let acc = ref acc in
    let pad = if quiet_zone then 4 else 0 in
    for y = 0 to m.w - 1 do
      for x = 0 to m.w - 1 do
        if (get m ~x ~y) then (acc := on ~x:(pad + x) ~y:(pad + y) !acc)
      done;
    done;
    String.concat "" (List.rev (!acc ++ "\n' /></svg>"))
end

(* QR code properties *)

type version = [ `V of int ]
type mode = [ `Byte ]
type ec_level = [ `L | `M | `Q | `H ]

module Prop = struct
  let version_min = 1
  let version_max = 40
  let version_to_w = function `V v -> 21 + 4 * (v - 1)
  let version_of_w w =
    let err w = Error ("QR code width cannot be " ^ string_of_int w) in
    match w with
    | w when 21 <= w && w <= 177 ->
        let base = w - 21 in
        if base mod 4 <> 0 then err w else Ok (`V (base / 4 + 1))
    | w -> err w

  (* Alignement patterns, functions allow to recover the data of table E.1 in
     N.B. this assumes version > 1 *)

  let align_pat_count (`V v) = (* along one dimension *) (v / 7) + 2
  let align_pat_first = 6
  let align_pat_last v = version_to_w v - 7
  let align_pat_delta (`V version as v) =
    (* center to center distance from right to left or bottom up. The last
       hop to column/row 6 absorbs the unevenness. *)
    if version = 32 then 26 (* odd exception: we compute 28 *) else
    let s = (align_pat_last v - align_pat_first) in
    let d = div_round_up s (align_pat_count v - 1) in
    if d mod 2 = 1 then d + 1 else d

  let align_pat_center ~pat_count ~pat_last ~pat_delta i =
    (* ith pattern from left to right or top to botom  *)
    if i = 0 then 6 else pat_last - pat_delta * ((pat_count - 1) - i)

  (* Capacity *)

  let total_modules (`V version as v) =
    (* 'Data modules except (C)' in table 1 *)
    let version_w = version_to_w v in
    let all_mods = version_w * version_w in
    let finder_mods = 3 * 64 in
    let timing_mods = 2 * (version_w - 16) in
    let align_pats_mods =
      if version = 1 then 0 else
      let align_pat_count = align_pat_count v in
      let align_pats = max 1 ((align_pat_count * align_pat_count) - 3) in
      let align_pats_and_timing_overlap = 2 * (5 * (align_pat_count - 2)) in
      align_pats * 25 - align_pats_and_timing_overlap
    in
    let version_mods = if version >= 7 then 2 * 18 else 0 in
    let format_info_mods = 2 * 15 in
    let lone_dark_mod = 1 in (* see figure 25 *)
    all_mods - finder_mods - timing_mods - align_pats_mods - version_mods -
    format_info_mods - lone_dark_mod

  let total_bytes v =
    (* 'Total number of codewords' in table 9  *)
    (total_modules v) / 8

  (* Error correction block specification, per ec level.

     Given the number of ec codeword per level and the number of blocks.
     We can recover the number of data code words per block and the block
     layout (first group and potentially second group with one more byte). *)

  let ec_level_idx = function `L -> 0 | `M -> 1 | `Q -> 2 | `H -> 3
  let ec_block_spec =
    (* Table 9, 'Number of error correction codewords' and
       'Number of error correction blocks' by increasing version and ec_level.
       This is the only property we did not manage to derive from structural
       principles of QR codes. *)
    [| 7;1; 10;1; 13;1; 17;1;
       10;1; 16;1; 22;1; 28;1;
       15;1; 26;1; 36;2; 44;2;
       20;1; 36;2; 52;2; 64;4;
       26;1; 48;2; 72;4; 88;4;
       36;2; 64;4; 96;4; 112;4;
       40;2; 72;4; 108;6; 130;5;
       48;2; 88;4; 132;6; 156;6;
       60;2; 110;5; 160;8; 192;8;
       72;4; 130;5; 192;8; 224;8;
       (* *)
       80;4; 150;5; 224;8; 264;11;
       96;4; 176;8; 260;10; 308;11;
       104;4; 198;9; 288;12; 352;16;
       120;4; 216;9; 320;16; 384;16;
       132;6; 240;10; 360;12; 432;18;
       144;6; 280;10; 408;17; 480;16;
       168;6; 308;11; 448;16; 532;19;
       180;6; 338;13; 504;18; 588;21;
       196;7; 364;14; 546;21; 650;25;
       224;8; 416;16; 600;20; 700;25;
       (* *)
       224;8; 442;17; 644;23; 750;25;
       252;9; 476;17; 690;23; 816;34;
       270;9; 504;18; 750;25; 900;30;
       300;10; 560;20; 810;27; 960;32;
       312;12; 588;21; 870;29; 1050;35;
       336;12; 644;23; 952;34; 1110;37;
       360;12; 700;25; 1020;34; 1200;40;
       390;13; 728;26; 1050;35; 1260;42;
       420;14; 784;28; 1140;38; 1350;45;
       450;15; 812;29; 1200;40; 1440;48;
       (* *)
       480;16; 868;31; 1290;43; 1530;51;
       510;17; 924;33; 1350;45; 1620;54;
       540;18; 980;35; 1440;48; 1710;57;
       570;19; 1036;37; 1530;51; 1800;60;
       570;19; 1064;38; 1590;53; 1890;63;
       600;20; 1120;40; 1680;56; 1980;66;
       630;21; 1204;43; 1770;59; 2100;70;
       660;22; 1260;45; 1860;62; 2220;74;
       720;24; 1316;47; 1950;65; 2310;77;
       750;25; 1372;49; 2040;68; 2430;81; |]

  let ec_bytes (`V version) ec_level =
    (* 'Number of error correction codewords' in table 9 *)
    ec_block_spec.((version - 1) * 8 + 2 * (ec_level_idx ec_level))

  let ec_blocks (`V version) ec_level =
    (* 'Number of error correction blocks' in table 9 *)
    ec_block_spec.((version - 1) * 8 + 2 * (ec_level_idx ec_level) + 1)

  let data_bytes version ec_level =
    (* 'Number of data codewords' in table 7 *)
    (total_bytes version) - (ec_bytes version ec_level)

  let character_count_bits (`V version) = function
  | `Byte -> if version <= 9 then 8 else 16

  let mode_capacity version ec_idx mode =
    (* 'Data capacity' in table 7 *)
    let bits = 8 * data_bytes version ec_idx in
    let bits = bits - 4 (* mode indicator *) in
    let bits = bits - character_count_bits version mode  in
    match mode with
    | `Byte -> bits / 8

  let field = lazy (Gf_256.create ~r:0b100011101 ~g:2) (* see 7.5.2 *)
  let gen field ~ec = Rs.gen field ~ec (* exposed for testing *)
end

(* Encoding

   https://www.thonky.com/qr-code-tutorial/ may be useful to understand the
   encoding process. *)

let encode_padding b ~first ~last = (* see 7.4.10 *)
  (* Pads with alternating 236 and 17 from ~first to ~last. *)
  let rec set_236 i last =
    if i > last then () else (Bytes.set b i 236; set_17 (i + 1) last)
  and set_17 i last =
    if i > last then () else (Bytes.set b i 17; set_236 i last)
  in
  set_236 first last

let encode_with_byte_mode v mode ~enc_len s = (* see 7.4 and 7.4.5 *)
  (* N.B. we can work around working at the bit level. Half bytes do it. *)
  let len = String.length s in
  let b = Bytes.create ~len:enc_len 0 in
  let cc = Prop.character_count_bits v mode in
  let get = Bytes.get and set = Bytes.set in
  set b 0 ((0b0100_0000) (* mode indicator *)
           lor (len lsr cc - 4)) (* hi four bits of len *);
  let half_data_start = match cc with
  | 8 ->
      set b 0 (0b0100_0000 lor ((len lsr 4) land 0xF));
      set b 1 ((len land 0xF) lsl 4);
      1
  | 16 ->
      set b 0 (0b0100_0000 lor ((len lsr 12) land 0xF));
      set b 1 ((len lsr 4) land 0xFF);
      set b 2 ((len land 0xF) lsl 4);
      2
  | _ -> assert false
  in
  let half_data_end = half_data_start + len - 1 + 1 in
  for i = 0 to len - 1 do
    let v = Char.code (String.get s i) in
    let k = half_data_start + i in
    set b k (get b k lor ((v lsr 4) land 0xF));
    set b (k + 1) ((v land 0xF) lsl 4);
  done;
  (* We always end up on a half-byte, add 0b0000 terminator (see 7.4.9) *)
  set b half_data_end (get b half_data_end land 0xF0);
  encode_padding b ~first:(half_data_end + 1) ~last:(enc_len - 1);
  b

let encode_with_mode v ec_level mode s = (* see 7.4 *)
  let enc_len = Prop.data_bytes v ec_level in
  match mode with
  | `Byte -> encode_with_byte_mode v mode ~enc_len s

(* Function modules matrix setters *)

let set_finder_patterns m = (* see 6.6.3 *)
  let set_finder_pattern m ~x ~y (* top-left *) =
    Matrix.set_square_frame m ~x ~y ~w:7;
    Matrix.set_square_frame m ~x:(x + 2) ~y:(y + 2) ~w:3;
    Matrix.set m ~x:(x + 3) ~y:(y + 3)
  in
  set_finder_pattern m ~x:0 ~y:0;
  set_finder_pattern m ~x:0 ~y:(Matrix.w m - 7);
  set_finder_pattern m ~x:(Matrix.w m - 7) ~y:0

let set_timing_patterns m = (* see 6.3.5 *)
  let max = Matrix.w m - 9 in
  for x = 8 to max do if x mod 2 = 0 then Matrix.set m ~x ~y:6 done;
  for y = 8 to max do if y mod 2 = 0 then Matrix.set m ~x:6 ~y done

let set_alignment_patterns (`V version as v) m = (* see 6.3.6 and annex E *)
  if version = 1 then () else
  let alignment_pattern m ~x ~y (* top-left *) =
    Matrix.set_square_frame m ~x ~y ~w:5;
    Matrix.set m ~x:(x + 2) ~y:(y + 2)
  in
  let pat_count = Prop.align_pat_count v in
  let pat_last = Prop.align_pat_last v in
  let pat_delta = Prop.align_pat_delta v in
  let max = pat_count - 1 in
  for i = 0 to max do
    for j = 0 to max do
      (* skip if overlaps with finder patterns *)
      if (i = 0 && j = 0) || (i = 0 && j = max) || (i = max && j = 0) then ()
      else
      let x = (Prop.align_pat_center ~pat_count ~pat_last ~pat_delta) i - 2 in
      let y = (Prop.align_pat_center ~pat_count ~pat_last ~pat_delta) j - 2 in
      alignment_pattern m ~x ~y
    done
  done

(* Format information matrix setter *)

let encode_format_information ec_level mask = (* see 7.9 & C.2 *)
  let ec_bits = match ec_level with
  | `L -> 0b01 | `M -> 0b00 | `Q -> 0b11 | `H -> 0b10
  in
  let data = (ec_bits lsl 13) lor (mask lsl 10) in
  let g = 0b10100110111 in
  let rem = ref data in
  for i = 14 downto 10 do
    if (!rem land (1 lsl i)) <> 0 then rem := !rem lxor (g lsl (i - 10));
  done;
  (data lor !rem) lxor 0b101010000010010

let set_format_information ec_level mask m = (* see 7.9 *)
  let data = encode_format_information ec_level mask in
  for i = 0 to 14 do
    let set = (data lsr i) land 1 = 1 in
    if not set then () else begin
      (* set horizontally, see figure 25 *)
      (if i < 8 then Matrix.set m ~x:(Matrix.w m - 1 - i) ~y:8 else
       if i < 9 then Matrix.set m ~x:(15 - i) ~y:8 else
       Matrix.set m ~x:(15 - i - 1) ~y:8);
      (* set vertically, see figure 25 *)
      (if i < 6 then Matrix.set m ~x:8 ~y:i else
       if i < 8 then Matrix.set m ~x:8 ~y:(i + 1) else
       Matrix.set m ~x:8 ~y:(Matrix.w m - (15 - i)))
    end;
  done;
  Matrix.set m ~x:8 ~y:(Matrix.w m - 8) (* dark module, see figure 25 *)

(* Version information matrix setter *)

let encode_version (`V version) = (* see 7.10 & D.2 *)
  let data = version lsl 12 in
  let g = 0b1111100100101 in
  let rem = ref data in
  for i = 17 downto 12 do
    if (!rem land (1 lsl i)) <> 0 then rem := !rem lxor (g lsl (i - 12));
  done;
  data lor !rem

let set_version_information (`V version as v) m = (* see 7.10 *)
  if version < 7 then () else
  let data = encode_version v in
  let delta = Matrix.w m - 8 - 3 in
  for i = 0 to 17 do
    let set = (data lsr i) land 1 = 1 in
    if not set then () else begin
      let x = i mod 3 and y = i / 3 in
      Matrix.set m ~x:(delta + x) ~y;  (* top right *)
      Matrix.set m ~x:y ~y:(delta + x) (* bottom left *)
    end
  done

(* Data and error correction matrix setter *)

let encode_ec v ec_level data =
  let total_bytes = Prop.total_bytes v in
  let block_count = Prop.ec_blocks v ec_level in
  let longer_block_count = total_bytes mod block_count in
  let normal_block_count = block_count - longer_block_count in
  let[@inline] is_longer_block i = i >= normal_block_count  in
  let ec_len = Prop.ec_bytes v ec_level / block_count in
  let data_len = (total_bytes / block_count) - ec_len in
  let blocks = (* see 7.5.2 and table 9 *)
    let start = ref 0 in
    let create_block i =
      let data_len = data_len + if (is_longer_block i) then 1 else 0 in
      let block_len = data_len + ec_len in
      let block = Bytes.create ~len:block_len 0 in
      Bytes.blit ~src:data !start ~dst:block 0 ~len:data_len;
      start := !start + data_len;
      block
    in
    Array.init block_count create_block
  in
  (* Data in blocks will be zeroed by RS computation so we allocate
     the data in the final bit stream now. See 7.6 and figure 15. *)
  let bits = Bytes.create ~len:total_bytes 0 in
  let byte = ref 0 in
  for i = 0 to (data_len + 1) - 1 do
    for b = 0 to block_count - 1 do
      if i = data_len && not (is_longer_block b) then () else
      (Bytes.set bits !byte (Bytes.get blocks.(b) i); incr byte)
    done
  done;
  (* Compute the error correction bytes in the blocks. *)
  let f = Lazy.force Prop.field in
  let log_gen = Rs.log_gen f ~ec:ec_len in
  Array.iter (Rs.encode f ~ec:ec_len ~log_gen) blocks;
  (* Allocate the error correction data in the bit stream (figure 15) *)
  for i = 0 to ec_len - 1 do
    for b = 0 to block_count - 1 do
      let i = Bytes.length blocks.(b) - ec_len + i in
      (Bytes.set bits !byte (Bytes.get blocks.(b) i); incr byte)
    done
  done;
  assert (!byte = total_bytes); (* check we used up all QR bytes *)
  bits

let mask_fun = function (* see table 10 *)
| 0 -> fun ~x ~y -> (y + x) mod 2 = 0
| 1 -> fun ~x:_ ~y -> y mod 2 = 0
| 2 -> fun ~x ~y:_ -> x mod 3 = 0
| 3 -> fun ~x ~y -> (y + x) mod 3 = 0
| 4 -> fun ~x ~y -> ((y / 2) + (x / 3)) mod 2 = 0
| 5 -> fun ~x ~y -> let yx = (y * x) in (yx mod 2) + (yx mod 3) = 0
| 6 -> fun ~x ~y -> let yx = (y * x) in ((yx mod 2) + (yx mod 3)) mod 2 = 0
| 7 -> fun ~x ~y -> (((y + x) mod 2) + ((y * x) mod 3)) mod 2 = 0
| _ -> assert false

let set_data mask (`V version as v) data m = (* see 7.7.3 *)
  let mask_fun = mask_fun mask in
  let w = Matrix.w m in
  let skip_version_info = version >= 7 in
  let[@inline] skip_function_pats ~x ~y =
    (skip_version_info && (* skip version info if version >= 7 *)
     ((y <= 5 && x >= w - 11) ||
      (x <= 5 && y >= w - 11))) ||
    y = 6 (* skip horizontal timing pattern *) ||
    (y <= 8 && (x <= 8 || x >= w - 8)) (* skip top finders *) ||
    (x <= 8 && y >= w - 8) (* skip bottom left finder *)
  in
  let max = w - 1 in
  let x = ref max in
  let y = ref max in
  let move = ref (-1) in (* negative moves up, positive moves down *)
  (* We go over the code from right to left up and down by 2-module wide
     columns and allocate the data bits on data modules (remaining unused
     ones are set to false). *)
  let bit = ref 0 in
  let bit_max = Bits.length data - 1 in
  while (!x >= 0) do
    while (0 <= !y && !y <= max) do
      for i = 0 to 1 do (* right and left modules of column row *)
        let x = !x - i in
        if (skip_function_pats[@inlined]) ~x ~y:!y then () else
        let skip_align_pat =
          (* The left module of columns is always handled by jumps when
             i = 0. This relies on the fact that pattern centers are always
             even. So on the left module (i = 1) there's nothing to skip. *)
          if i = 1 then false else
          if not (Matrix.get ~x ~y:!y m) then false else
          (* We hit an alignment pattern. *)
          let left = Matrix.get ~x:(x - 1) ~y:!y m in
          (* If left is also [true] we are not on the left edge of the
             the pattern so we skip the pattern height for the column
             and proceed directly with the new column row (for that
             row skip_base_function_patterns is guaranteed to be [false]). *)
          if left then (y := !y + 5 * !move; false) else
          true (* just skip the edge for the right module of the column. *)
        in
        if skip_align_pat then () else
        let v = if !bit <= bit_max then Bits.get data !bit else false in
        let v = if mask_fun ~x ~y:!y then not v else v in
        if v then Matrix.set ~x ~y:!y m;
        incr bit;
      done;
      y := !y + !move;
    done;
    x := !x - 2; (* next 2-module wide column *)
    if !x = 6 then decr x; (* skip vertical timing pattern. *)
    move := !move * -1; y := !y + !move; (* switch direction *)
  done;
  assert (!bit = Prop.total_modules v); (* check we used up all QR modules *)
  ()

(* Matrix penalty computation, section 7.8.3.1. *)

let[@inline] n3_incr j i max m =
  (* n3 XXX this is slow and we could be smarter about the search here.
     Abstracting over dimension also makes us loose a bit of time. *)
  let acc = ref 0 in
  for k = 0 to 1 do (* Do the check in both dimensions. *)
    let swap = k = 1 in
    let i = if swap then j else i
    and j = if swap then i else j in
    let[@inline] get ~x ~y m =
      if swap
      then Matrix.get ~x:y ~y:x m
      else Matrix.get ~x ~y m
    in
    if j + 6 <= max then begin
      (* check for 1011101 at (j,i), (j,i) is already checked to be true) *)
      if not (get ~x:(j + 1) ~y:i m) &&
         get ~x:(j + 2) ~y:i m &&
         get ~x:(j + 3) ~y:i m &&
         get ~x:(j + 4) ~y:i m &&
         not (get ~x:(j + 5) ~y:i m) &&
         get ~x:(j + 6) ~y:i m
      then begin
        if j - 4 >= 0 then begin (* 0000 before *)
          let count = ref 0 in
          while (!count < 4 && not (get ~x:(j - !count - 1) ~y:i m))
          do incr count done; if !count = 4 then acc := !acc + 40
        end;
        if j + 6 + 4 <= max then begin (* 0000 after *)
          let count = ref 0 in
          while (!count < 4 && not (get ~x:(j + 6 + !count + 1) ~y:i m))
          do incr count done; if !count = 4 then acc := !acc + 40
        end
      end
    end
  done;
  !acc

let matrix_penalty m = (* see table 11 *)
  let max = Matrix.w m - 1 in
  let n1 = ref 0 in
  let n1_last_h = ref false and n1_acc_h = ref 0 in
  let n1_last_v = ref false and n1_acc_v = ref 0 in
  let n2 = ref 0 in
  let n3 = ref 0 in
  let n4_dark = ref 0 in
  for i = 0 to max do
    n1_last_h := Matrix.get ~x:0 ~y:i m; n1_acc_h := 0;
    n1_last_v := Matrix.get ~x:i ~y:0 m; n1_acc_v := 0;
    for j = 0 to max do
      (* n1: consecutive colors horizontaly or vertically *)
      let curr_h = Matrix.get ~x:j ~y:i m in
      if !n1_last_h = curr_h then incr n1_acc_h else begin
        if !n1_acc_h >= 5 then (n1 := !n1 + (!n1_acc_h - 2));
        n1_last_h := curr_h; n1_acc_h := 1
      end;
      let curr_v = Matrix.get ~x:i ~y:j m in
      if !n1_last_v = curr_v then incr n1_acc_v else begin
        if !n1_acc_v >= 5 then (n1 := !n1 + (!n1_acc_v - 2));
        n1_last_v := curr_v; n1_acc_v := 1
      end;
      (* n2: block of 2x2 of the same color *)
      if j < max && i < max then begin
        let v0 = curr_h in
        let j' = j + 1 in
        let v1 = Matrix.get ~x:j' ~y:i m in
        if v1 <> v0 then () else
        let i' = i + 1 in
        let v2 = Matrix.get ~x:j ~y:i' m in
        if v2 <> v1 then () else
        let v3 = Matrix.get ~x:j' ~y:i' m in
        if v3 <> v2 then () else (n2 := !n2 + 3)
      end;
      (* n3: find [0000]1011101[0000] *)
      if curr_h then (n3 := !n3 + n3_incr j i max m);
      (* n4: collect dark modules *)
      if curr_h then incr n4_dark;
    done;
  done;
  let n4 =
    let r = (float !n4_dark) /. float (Matrix.w m * Matrix.w m) in
    let dev = abs_float (50. -. r *. 100.) in
    truncate (dev /. 5.) * 10
  in
  !n1 + !n2 + !n3 + n4

(* Matrix encoding *)

let layout_function_modules v m =
  set_finder_patterns m;
  set_timing_patterns m;
  set_alignment_patterns v m;
  set_version_information v m

let layout_data version ec_level mask data m =
  set_format_information ec_level mask m;
  set_data mask version data m;
  ()

let base_matrix v =
  let m = Matrix.zero ~w:(Prop.version_to_w v) in
  layout_function_modules v m; m

let encode_matrix ?mask ~version:v ~ec_level ~mode s =
  let data = encode_with_mode v ec_level mode s in
  let data = encode_ec v ec_level data in
  let base_matrix = base_matrix v in
  let min_penalty = ref max_int in
  let min_matrix = ref base_matrix in
  let min_mask, max_mask = match mask with
  | Some mask -> mask, mask (* only try this mask *)
  | None -> 0, 7 (* all mask as per standard *)
  in
  for mask = min_mask to max_mask do
    let m = Matrix.copy base_matrix in
    layout_data v ec_level mask data m;
    let p = matrix_penalty m in
    if p < !min_penalty then (min_penalty := p; min_matrix := m)
  done;
  !min_matrix

(* Encoding *)

let find_mode ?mode _s = match mode with Some m -> m | None -> `Byte
let rec get_best_level_for_version v ~mode ~after ~need =
  (* Sometimes we can fit the same version with the next ec level *)
  let try_next next = match need <= Prop.mode_capacity v next mode with
  | true -> get_best_level_for_version v ~mode ~after:next ~need
  | false -> after
  in
  match after with
  | `L -> try_next `M | `M -> try_next `Q | `Q -> try_next `H | `H -> `H

let find_version ~version ~mode ~ec_level ~need = match version with
| Some v ->
    if need <= Prop.mode_capacity v ec_level mode
    then Some (v, get_best_level_for_version v ~mode ~after:ec_level ~need)
    else None
| None ->
    let rec loop (`V version as v) =
      if version > Prop.version_max then None else
      if need <= Prop.mode_capacity v ec_level mode
      then Some (v, get_best_level_for_version v ~mode ~after:ec_level ~need)
      else loop (`V (version + 1))
    in
    loop (`V Prop.version_min)

let encode ?mask ?version ?mode ?(ec_level = `M) s =
  let mode = find_mode ?mode s in
  match find_version ~version ~mode ~ec_level ~need:(String.length s) with
  | None -> None
  | Some (v, ec) -> Some (encode_matrix ?mask ~version:v ~ec_level:ec ~mode s)