Source file tezos_tree_encoding.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
open Tezos_lazy_containers
include Tree
exception Uninitialized_self_ref
type key = string list
module E = Encoding
module D = Decoding
type 'a encoding = 'a E.t
type 'a decoding = 'a D.t
type 'a t = {encode : 'a encoding; decode : 'a decoding}
let return x = {encode = E.ignore; decode = D.Syntax.return x}
let conv d e {encode; decode} =
{encode = E.contramap e encode; decode = D.map d decode}
let conv_lwt d e {encode; decode} =
{encode = E.contramap_lwt e encode; decode = D.map_lwt d decode}
let scope key {encode; decode} =
{encode = E.scope key encode; decode = D.scope key decode}
let tup2_ a b =
{encode = E.tup2 a.encode b.encode; decode = D.Syntax.both a.decode b.decode}
let tup3_ a b c =
conv
(fun (a, (b, c)) -> (a, b, c))
(fun (a, b, c) -> (a, (b, c)))
(tup2_ a (tup2_ b c))
let tup4_ a b c d =
conv
(fun (a, (b, c, d)) -> (a, b, c, d))
(fun (a, b, c, d) -> (a, (b, c, d)))
(tup2_ a (tup3_ b c d))
let tup5_ a b c d e =
conv
(fun (a, (b, c, d, e)) -> (a, b, c, d, e))
(fun (a, b, c, d, e) -> (a, (b, c, d, e)))
(tup2_ a (tup4_ b c d e))
let tup6_ a b c d e f =
conv
(fun (a, (b, c, d, e, f)) -> (a, b, c, d, e, f))
(fun (a, b, c, d, e, f) -> (a, (b, c, d, e, f)))
(tup2_ a (tup5_ b c d e f))
let tup7_ a b c d e f g =
conv
(fun (a, (b, c, d, e, f, g)) -> (a, b, c, d, e, f, g))
(fun (a, b, c, d, e, f, g) -> (a, (b, c, d, e, f, g)))
(tup2_ a (tup6_ b c d e f g))
let tup8_ a b c d e f g h =
conv
(fun (a, (b, c, d, e, f, g, h)) -> (a, b, c, d, e, f, g, h))
(fun (a, b, c, d, e, f, g, h) -> (a, (b, c, d, e, f, g, h)))
(tup2_ a (tup7_ b c d e f g h))
let tup9_ a b c d e f g h i =
conv
(fun (a, (b, c, d, e, f, g, h, i)) -> (a, b, c, d, e, f, g, h, i))
(fun (a, b, c, d, e, f, g, h, i) -> (a, (b, c, d, e, f, g, h, i)))
(tup2_ a (tup8_ b c d e f g h i))
let tup10_ a b c d e f g h i j =
conv
(fun (a, (b, c, d, e, f, g, h, i, j)) -> (a, b, c, d, e, f, g, h, i, j))
(fun (a, b, c, d, e, f, g, h, i, j) -> (a, (b, c, d, e, f, g, h, i, j)))
(tup2_ a (tup9_ b c d e f g h i j))
let flat_or_wrap ~flatten ix enc =
if flatten then enc else scope [string_of_int ix] enc
let tup2 ~flatten a b =
tup2_ (flat_or_wrap ~flatten 1 a) (flat_or_wrap ~flatten 2 b)
let tup3 ~flatten a b c =
tup3_
(flat_or_wrap ~flatten 1 a)
(flat_or_wrap ~flatten 2 b)
(flat_or_wrap ~flatten 3 c)
let tup4 ~flatten a b c d =
tup4_
(flat_or_wrap ~flatten 1 a)
(flat_or_wrap ~flatten 2 b)
(flat_or_wrap ~flatten 3 c)
(flat_or_wrap ~flatten 4 d)
let tup5 ~flatten a b c d e =
tup5_
(flat_or_wrap ~flatten 1 a)
(flat_or_wrap ~flatten 2 b)
(flat_or_wrap ~flatten 3 c)
(flat_or_wrap ~flatten 4 d)
(flat_or_wrap ~flatten 5 e)
let tup6 ~flatten a b c d e f =
tup6_
(flat_or_wrap ~flatten 1 a)
(flat_or_wrap ~flatten 2 b)
(flat_or_wrap ~flatten 3 c)
(flat_or_wrap ~flatten 4 d)
(flat_or_wrap ~flatten 5 e)
(flat_or_wrap ~flatten 6 f)
let tup7 ~flatten a b c d e f g =
tup7_
(flat_or_wrap ~flatten 1 a)
(flat_or_wrap ~flatten 2 b)
(flat_or_wrap ~flatten 3 c)
(flat_or_wrap ~flatten 4 d)
(flat_or_wrap ~flatten 5 e)
(flat_or_wrap ~flatten 6 f)
(flat_or_wrap ~flatten 7 g)
let tup8 ~flatten a b c d e f g h =
tup8_
(flat_or_wrap ~flatten 1 a)
(flat_or_wrap ~flatten 2 b)
(flat_or_wrap ~flatten 3 c)
(flat_or_wrap ~flatten 4 d)
(flat_or_wrap ~flatten 5 e)
(flat_or_wrap ~flatten 6 f)
(flat_or_wrap ~flatten 7 g)
(flat_or_wrap ~flatten 8 h)
let tup9 ~flatten a b c d e f g h i =
tup9_
(flat_or_wrap ~flatten 1 a)
(flat_or_wrap ~flatten 2 b)
(flat_or_wrap ~flatten 3 c)
(flat_or_wrap ~flatten 4 d)
(flat_or_wrap ~flatten 5 e)
(flat_or_wrap ~flatten 6 f)
(flat_or_wrap ~flatten 7 g)
(flat_or_wrap ~flatten 8 h)
(flat_or_wrap ~flatten 9 i)
let tup10 ~flatten a b c d e f g h i j =
tup10_
(flat_or_wrap ~flatten 1 a)
(flat_or_wrap ~flatten 2 b)
(flat_or_wrap ~flatten 3 c)
(flat_or_wrap ~flatten 4 d)
(flat_or_wrap ~flatten 5 e)
(flat_or_wrap ~flatten 6 f)
(flat_or_wrap ~flatten 7 g)
(flat_or_wrap ~flatten 8 h)
(flat_or_wrap ~flatten 9 i)
(flat_or_wrap ~flatten 10 j)
let raw key = {encode = E.raw key; decode = D.raw key}
let value ?default key de =
{encode = E.value key de; decode = D.value ?default key de}
module Lazy_map_encoding = struct
module type S = sig
type 'a map
val lazy_map : 'a t -> 'a map t
end
module Make (Map : Lazy_map.S) = struct
let lazy_map value =
let to_key k = [Map.string_of_key k] in
let encode =
E.contramap
(fun map -> (Map.origin map, Map.loaded_bindings map))
(E.lazy_mapping to_key value.encode)
in
let decode =
D.map
(fun (origin, produce_value) -> Map.create ?origin ~produce_value ())
(let open D.Syntax in
let+ produce_value = D.lazy_mapping to_key value.decode in
produce_value)
in
{encode; decode}
end
end
module Make_lazy_vector_encoding (Vector : Tezos_lazy_containers.Lazy_vector.S) =
struct
let lazy_vector with_key value =
let open Vector in
let to_key k = [string_of_key k] in
let encode =
E.contramap
(fun vector ->
( (origin vector, loaded_bindings vector),
num_elements vector,
first_key vector ))
(E.tup3
(E.scope ["contents"] (E.lazy_mapping to_key value.encode))
(E.scope ["length"] with_key.encode)
(E.scope ["head"] with_key.encode))
in
let decode =
D.map
(fun ((origin, produce_value), len, head) ->
create ~produce_value ~first_key:head ?origin len)
(let open D.Syntax in
let+ x = D.scope ["contents"] (D.lazy_mapping to_key value.decode)
and+ y = D.scope ["length"] with_key.decode
and+ z = D.scope ["head"] with_key.decode in
(x, y, z))
in
{encode; decode}
end
module Int_lazy_vector = Make_lazy_vector_encoding (Lazy_vector.IntVector)
module Int32_lazy_vector = Make_lazy_vector_encoding (Lazy_vector.Int32Vector)
module Int64_lazy_vector = Make_lazy_vector_encoding (Lazy_vector.Int64Vector)
module Z_lazy_vector = Make_lazy_vector_encoding (Lazy_vector.ZVector)
let int_lazy_vector = Int_lazy_vector.lazy_vector
let int32_lazy_vector = Int32_lazy_vector.lazy_vector
let int64_lazy_vector = Int64_lazy_vector.lazy_vector
let z_lazy_vector = Z_lazy_vector.lazy_vector
let chunk =
let open Chunked_byte_vector.Chunk in
conv of_bytes to_bytes (raw [])
let chunked_byte_vector =
let open Chunked_byte_vector in
let to_key k = [Int64.to_string k] in
let encode =
E.contramap
(fun vector -> ((origin vector, loaded_chunks vector), length vector))
(E.tup2
(E.scope ["contents"] @@ E.lazy_mapping to_key chunk.encode)
(E.value ["length"] Data_encoding.int64))
in
let decode =
D.map
(fun ((origin, get_chunk), len) -> create ?origin ~get_chunk len)
(let open D.Syntax in
let+ x = D.scope ["contents"] @@ D.lazy_mapping to_key chunk.decode
and+ y = D.value ["length"] Data_encoding.int64 in
(x, y))
in
{encode; decode}
type ('tag, 'a) case =
| Case : {
tag : 'tag;
probe : 'a -> 'b Lwt.t option;
extract : 'b -> 'a Lwt.t;
delegate : 'b t;
}
-> ('tag, 'a) case
let case_lwt tag delegate probe = Case {tag; delegate; probe; extract}
let case tag delegate probe =
case_lwt
tag
delegate
(fun x -> Option.map Lwt.return @@ probe x)
(fun x -> Lwt.return @@ extract x)
let tagged_union ?default {encode; decode} cases =
let to_encode_case (Case {tag; delegate; probe; extract = _}) =
E.case_lwt tag delegate.encode probe
in
let to_decode_case (Case {tag; delegate; ; probe = _}) =
D.case_lwt tag delegate.decode extract
in
let encode = E.tagged_union encode (List.map to_encode_case cases) in
let decode = D.tagged_union ?default decode (List.map to_decode_case cases) in
{encode; decode}
let value_option key encoding =
let encode = E.value_option key encoding in
let decode = D.value_option key encoding in
{encode; decode}
let option enc =
tagged_union
~default:(fun () -> None)
(value [] Data_encoding.string)
[
case "Some" enc Fun.id Option.some;
case
"None"
(return ())
(function None -> Some () | _ -> None)
(fun () -> None);
]
let delayed f =
let enc = lazy (f ()) in
let encode =
E.delayed (fun () ->
let {encode; _} = Lazy.force enc in
encode)
in
let decode =
D.delayed (fun () ->
let {decode; _} = Lazy.force enc in
decode)
in
{encode; decode}
let either enc_a enc_b =
tagged_union
(value [] Data_encoding.string)
[
case
"Left"
enc_a
(function Either.Left x -> Some x | _ -> None)
(function x -> Left x);
case
"Right"
enc_b
(function Either.Right x -> Some x | _ -> None)
(function x -> Right x);
]
module type TREE = S
type wrapped_tree = Tree.wrapped_tree
module Wrapped : TREE with type tree = wrapped_tree = Tree.Wrapped
let wrapped_tree : wrapped_tree t =
{encode = E.wrapped_tree; decode = D.wrapped_tree}
module Runner = struct
module Make (T : TREE) = struct
let encode {encode; _} value tree = E.run (module T) encode value tree
let decode {decode; _} tree = D.run (module T) decode tree
end
end