Source file adt_rel.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
(******************************************************************************)
(*                                                                            *)
(*     Alt-Ergo: The SMT Solver For Software Verification                     *)
(*     Copyright (C) 2013-2018 --- OCamlPro SAS                               *)
(*                                                                            *)
(*     This file is distributed under the terms of the license indicated      *)
(*     in the file 'License.OCamlPro'. If 'License.OCamlPro' is not           *)
(*     present, please contact us to clarify licensing.                       *)
(*                                                                            *)
(******************************************************************************)

open Options
open Format

module X = Shostak.Combine
module Sh = Shostak.Adt
open Sh

type r = X.r
type uf = Uf.t

module Ex = Explanation
module E = Expr
module SE = E.Set
module Hs = Hstring
module HSS = Hs.Set
module Sy = Symbols

module MX = Shostak.MXH
module LR = Uf.LX
module SLR = Set.Make(LR)
module MHs = Hs.Map

type t =
  {
    classes : E.Set.t list;
    domains : (HSS.t * Explanation.t) MX.t;
    seen_destr : SE.t;
    seen_access : SE.t;
    seen_testers : HSS.t MX.t;
    [@ocaml.ppwarning "selectors should be improved. only representatives \
                       in it. No true or false _is"]

    selectors : (E.t * Ex.t) list MHs.t MX.t;
    size_splits : Numbers.Q.t;
    new_terms : SE.t;
    pending_deds :
      (r Sig_rel.literal * Ex.t * Th_util.lit_origin) list
  }

let empty classes = {
  classes;
  domains = MX.empty;
  seen_destr = SE.empty;
  seen_access = SE.empty;
  seen_testers = MX.empty;
  selectors = MX.empty;
  size_splits = Numbers.Q.one;
  new_terms = SE.empty;
  pending_deds = [];
}


(* ################################################################ *)
(*BISECT-IGNORE-BEGIN*)
module Debug = struct
  open Printer

  let assume a =
    if get_debug_adt () then
      print_dbg
        ~module_name:"Adt_rel"
        ~function_name:"assume"
        " we assume %a" LR.print (LR.make a)

  let print_env loc env =
    if get_debug_adt () then begin
      print_dbg ~flushed:false ~module_name:"Adt_rel" ~function_name:"print_env"
        "@ @[<v 2>--ADT env %s ---------------------------------@ " loc;
      MX.iter
        (fun r (hss, ex) ->
           print_dbg ~flushed:false ~header:false
             "%a 's domain is " X.print r;
           begin
             match HSS.elements hss with
               []      -> ()
             | hs :: l ->
               print_dbg ~flushed:false ~header:false
                 "{ %s" (Hs.view hs);
               List.iter (fun hs ->
                   print_dbg ~flushed:false ~header:false
                     " | %s" (Hs.view hs)) l
           end;
           print_dbg ~flushed:false ~header:false " } %a@ " Ex.print ex;

        ) env.domains;
      print_dbg ~flushed:false ~header:false
        "@]@ @[<v 2>-- seen testers ---------------------------@ ";
      MX.iter
        (fun r hss ->
           HSS.iter
             (fun hs ->
                print_dbg ~flushed:false ~header:false
                  "(%a is %a)@ " X.print r Hs.print hs
             )hss
        )env.seen_testers;
      print_dbg ~flushed:false ~header:false
        "@]@ @[<v 2>-- selectors ------------------------------@ ";
      MX.iter
        (fun r mhs ->
           MHs.iter
             (fun hs l ->
                List.iter (fun (a, _) ->
                    print_dbg ~flushed:false ~header:false
                      "(%a is %a) ==> %a@ "
                      X.print r Hs.print hs E.print a
                  ) l
             )mhs
        )env.selectors;
      print_dbg ~header:false
        "@]@ -------------------------------------------";
    end

  (* unused --
     let case_split r r' =
     if get_debug_adt () then
       Printer.print_dbg
          "[ADT.case-split] %a = %a" X.print r X.print r'
  *)

  let no_case_split () =
    if get_debug_adt () then
      print_dbg
        ~module_name:"Adt_rel"
        ~function_name:"case-split"
        "nothing"

  let add r =
    if get_debug_adt () then
      print_dbg
        ~module_name:"Adt_rel"
        ~function_name:"add"
        "%a" X.print r

end
(*BISECT-IGNORE-END*)
(* ################################################################ *)


let print_model _ _ _ = ()
let new_terms env = env.new_terms
let instantiate ~do_syntactic_matching:_ _ env _ _ = env, []

let assume_th_elt t th_elt _ =
  match th_elt.Expr.extends with
  | Util.Adt ->
    failwith "This Theory does not support theories extension"
  | _ -> t

let seen_tester r hs env =
  try HSS.mem hs (MX.find r env.seen_testers)
  with Not_found -> false


let deduce_is_constr uf r h eqs env ex =
  let r, ex' = try Uf.find_r uf r with Not_found -> assert false in
  let ex = Ex.union ex ex' in
  match embed r with
  | Adt.Alien r ->
    begin match X.term_extract r with
      | Some t, _ ->
        let eqs =
          if seen_tester r h env then eqs
          else
            let is_c = E.mk_builtin ~is_pos:true (Sy.IsConstr h) [t] in
            if get_debug_adt () then
              Printer.print_dbg
                ~module_name:"Adt_rel"
                ~function_name:"deduce_is_constr"
                "%a" E.print is_c;
            (Sig_rel.LTerm is_c, ex, Th_util.Other) :: eqs
        in
        begin
          match E.term_view t with
          | E.Not_a_term _ -> assert false
          | E.Term { E.ty = Ty.Tadt (name,params) as ty; _ } ->
            (* Only do this deduction for finite types ??
                 may not terminate in some cases otherwise.
                 eg. type t = A of t
                 goal g: forall e,e' :t. e = C(e') -> false
                 + should not be guareded by "seen_tester"
            *)
            let cases = match Ty.type_body name params with
              | Ty.Adt cases -> cases
            in
            let {Ty.destrs; _} =
              try List.find (
                  fun { Ty.constr = c; _ } -> Hstring.equal h c
                ) cases
              with Not_found -> assert false
            in
            let xs = List.map (fun (_, ty) -> E.fresh_name ty) destrs in
            let cons = E.mk_term (Sy.constr (Hs.view h)) xs ty in
            let env = {env with new_terms = SE.add cons env.new_terms} in
            let eq = E.mk_eq t cons ~iff:false in
            if get_debug_adt () then
              Printer.print_dbg
                ~module_name:"Adt_rel"
                ~function_name:"deduce equal to constr"
                "%a" E.print eq;
            let eqs = (Sig_rel.LTerm eq, ex, Th_util.Other) :: eqs in
            env, eqs
          | _ -> env, eqs
        end
      | _ ->
        Printer.print_err "%a" X.print r;
        assert false
    end
  | _ -> env,eqs

let values_of ty =
  match ty with
  | Ty.Tadt (name,params) ->
    let l = match Ty.type_body name params with
      | Ty.Adt cases -> cases
    in
    Some
      (List.fold_left (fun st {Ty.constr; _} -> HSS.add constr st) HSS.empty l)
  | _ -> None

let add_adt env uf t r sy ty =
  if MX.mem r env.domains then env
  else
    match sy, ty with
    | Sy.Op Sy.Constr hs, Ty.Tadt _ ->
      if get_debug_adt () then
        Printer.print_dbg
          ~module_name:"Adt_rel" ~function_name:"add_adt"
          "new ADT expr(C): %a" E.print t;
      { env with domains =
                   MX.add r (HSS.singleton hs, Ex.empty) env.domains }

    | _, Ty.Tadt _ ->
      if get_debug_adt () then
        Printer.print_dbg
          ~module_name:"Adt_rel" ~function_name:"add_adt"
          "new ADT expr: %a" E.print t;
      let constrs =
        match values_of ty with None -> assert false | Some s -> s
      in
      let env =
        { env with domains = MX.add r (constrs, Ex.empty) env.domains }
      in
      if HSS.cardinal constrs = 1 then
        let h' = HSS.choose constrs in
        let env, pending_deds =
          deduce_is_constr uf r h' env.pending_deds env Ex.empty
        in
        {env with pending_deds}
      else
        env

    | _ -> env

let update_tester r hs env =
  let old = try MX.find r env.seen_testers with Not_found -> HSS.empty in
  {env with seen_testers = MX.add r (HSS.add hs old) env.seen_testers}

let trivial_tester r hs =
  match embed r with (* can filter further/better *)
  | Adt.Constr { c_name; _ } -> Hstring.equal c_name hs
  | _ -> false

let constr_of_destr ty dest =
  if get_debug_adt () then
    Printer.print_dbg
      ~module_name:"Adt_rel" ~function_name:"constr_of_destr"
      "ty = %a" Ty.print ty;
  match ty with
  | Ty.Tadt (name, params) ->
    let cases =
      match Ty.type_body name params with
      | Ty.Adt cases -> cases
    in
    begin
      try
        List.find
          (fun {Ty.destrs; _} ->
             List.exists (fun (d, _) -> Hstring.equal dest d) destrs
          )cases
      with Not_found -> assert false (* invariant *)
    end
  | _ -> assert false


[@@ocaml.ppwarning "XXX improve. For each selector, store its \
                    corresponding constructor when typechecking ?"]
let add_guarded_destr env uf t hs e t_ty =
  if get_debug_adt () then
    Printer.print_dbg ~flushed:false
      ~module_name:"Adt_rel" ~function_name:"add_guarded_destr"
      "new (guarded) Destr: %a@ " E.print t;
  let env = { env with seen_destr = SE.add t env.seen_destr } in
  let {Ty.constr = c; _} = constr_of_destr (E.type_info e) hs in
  let access = E.mk_term (Sy.destruct (Hs.view hs) ~guarded:false) [e] t_ty in
  (* XXX : Never add non-guarded access to list of new terms !
     This may/will introduce bugs when instantiating
     let env = {env with new_terms = SE.add access env.new_terms} in
  *)
  let is_c = E.mk_builtin ~is_pos:true (Sy.IsConstr c) [e] in
  let eq = E.mk_eq access t ~iff:false in
  if get_debug_adt () then
    Printer.print_dbg ~header:false
      "associated with constr %a@,%a => %a"
      Hstring.print c
      E.print is_c
      E.print eq;
  let r_e, ex_e = try Uf.find uf e with Not_found -> assert false in
  if trivial_tester r_e c then
    {env with pending_deds =
                (Sig_rel.LTerm eq, ex_e, Th_util.Other) :: env.pending_deds}
  else
  if seen_tester r_e c env then
    {env with pending_deds =
                (Sig_rel.LTerm eq, ex_e, Th_util.Other) :: env.pending_deds}
  else
    let m_e = try MX.find r_e env.selectors with Not_found -> MHs.empty in
    let old = try MHs.find c m_e with Not_found -> [] in
    { env with selectors =
                 MX.add r_e (MHs.add c ((eq, ex_e)::old) m_e)
                   env.selectors }


[@@ocaml.ppwarning "working with X.term_extract r would be sufficient ?"]
let add_aux env (uf:uf) (r:r) t =
  if get_disable_adts () then env
  else
    let { E.f = sy; xs; ty; _ } = match E.term_view t with
      | E.Term t -> t
      | E.Not_a_term _ -> assert false
    in
    let env = add_adt env uf t r sy ty in
    match sy, xs with
    | Sy.Op Sy.Destruct (hs, true), [e] -> (* guarded *)
      if get_debug_adt () then
        Printer.print_dbg
          ~module_name:"Adt_rel" ~function_name:"add_aux"
          "add guarded destruct: %a" E.print t;
      if (SE.mem t env.seen_destr) then env
      else add_guarded_destr env uf t hs e ty

    | Sy.Op Sy.Destruct (_, false), [_] ->
      (* not guarded *)
      if get_debug_adt () then
        Printer.print_dbg
          ~module_name:"Adt_rel" ~function_name:"add_aux"
          "[ADTs] add unguarded destruct: %a" E.print t;
      { env with seen_access = SE.add t env.seen_access }

    | Sy.Op Sy.Destruct _, _ ->
      assert false (* not possible *)

    (*| Sy.Op Sy.IsConstr _, _ ->
      if get_debug_adt () then
      Printer.print_dbg
      "new Tester: %a" E.print t;
       { env with seen_testers = SE.add t env.seen_testers }
    *)
    | _ -> env

let add env (uf:uf) (r:r) t =
  add_aux env (uf:uf) (r:r) t, []


let count_splits env la =
  let nb =
    List.fold_left
      (fun nb (_,_,_,i) ->
         match i with
         | Th_util.CS (Th_util.Th_sum, n) -> Numbers.Q.mult nb n
         | _ -> nb
      )env.size_splits la
  in
  {env with size_splits = nb}

let add_diseq uf hss sm1 sm2 dep env eqs =
  match sm1, sm2 with
  | Adt.Alien r , Adt.Constr { c_name = h; c_args = []; _ }
  | Adt.Constr { c_name = h; c_args = []; _ }, Adt.Alien r  ->
    (* not correct with args *)
    let enum, ex =
      try MX.find r env.domains with Not_found -> hss, Ex.empty
    in
    let enum = HSS.remove h enum in
    let ex = Ex.union ex dep in
    if HSS.is_empty enum then raise (Ex.Inconsistent (ex, env.classes))
    else
      let env = { env with domains = MX.add r (enum, ex) env.domains } in
      if HSS.cardinal enum = 1 then
        let h' = HSS.choose enum in
        let env, eqs = deduce_is_constr uf r h' eqs env ex in
        env, eqs
      else env, eqs

  | Adt.Alien _ , Adt.Constr _ | Adt.Constr _, Adt.Alien _  ->
    env, eqs

  | Adt.Alien r1, Adt.Alien r2 ->
    let enum1,ex1=
      try MX.find r1 env.domains with Not_found -> hss,Ex.empty in
    let enum2,ex2=
      try MX.find r2 env.domains with Not_found -> hss,Ex.empty in

    let env, eqs =
      if HSS.cardinal enum1 = 1 then
        let ex = Ex.union dep ex1 in
        let h' = HSS.choose enum1 in
        deduce_is_constr uf r1 h' eqs env ex
      else env, eqs
    in
    let env, eqs =
      if HSS.cardinal enum2 = 1 then
        let ex = Ex.union dep ex2 in
        let h' = HSS.choose enum2 in
        deduce_is_constr uf r2 h' eqs env ex
      else env, eqs
    in
    env, eqs

  |  _ -> env, eqs

let assoc_and_remove_selector hs r env =
  try
    let mhs = MX.find r env.selectors in
    let deds = MHs.find hs mhs in
    let mhs = MHs.remove hs mhs in
    deds,
    (if MHs.is_empty mhs then {env with selectors = MX.remove r env.selectors}
     else {env with selectors = MX.add r mhs env.selectors})

  with Not_found ->
    [], env

let assume_is_constr uf hs r dep env eqs =
  match embed r with
  | Adt.Constr{ c_name; _ } when not (Hs.equal c_name hs) ->
    raise (Ex.Inconsistent (dep, env.classes));
  | _ ->
    if get_debug_adt () then
      Printer.print_dbg
        ~module_name:"Adt_rel" ~function_name:"assume_is_constr"
        "assume is constr %a %a" X.print r Hs.print hs;
    if seen_tester r hs env then
      env, eqs
    else
      let deds, env = assoc_and_remove_selector hs r env in
      let eqs =
        List.fold_left
          (fun eqs (ded, dep') ->
             (Sig_rel.LTerm ded, Ex.union dep dep', Th_util.Other) :: eqs
          )eqs deds
      in
      let env = update_tester r hs env in

      let enum, ex =
        try MX.find r env.domains
        with Not_found ->
        (*Cannot just put assert false !
          some terms are not well inited *)
        match values_of (X.type_info r) with
        | None -> assert false
        | Some s -> s, Ex.empty
      in
      let ex = Ex.union ex dep in
      if not (HSS.mem hs enum) then raise (Ex.Inconsistent (ex, env.classes));
      let env, eqs = deduce_is_constr uf r hs eqs env ex in
      {env with domains = MX.add r (HSS.singleton hs, ex) env.domains} , eqs

let assume_not_is_constr uf hs r dep env eqs =
  match embed r with
  | Adt.Constr{ c_name; _ } when Hs.equal c_name hs ->
    raise (Ex.Inconsistent (dep, env.classes));
  | _ ->

    let _, env = assoc_and_remove_selector hs r env in
    let enum, ex =
      try MX.find r env.domains with
        Not_found ->
        (* semantic values may be not inited with function add *)
        match values_of (X.type_info r) with
        | Some s -> s, Ex.empty
        | None -> assert false
    in
    if not (HSS.mem hs enum) then env, eqs
    else
      let enum = HSS.remove hs enum in
      let ex = Ex.union ex dep in
      if HSS.is_empty enum then raise (Ex.Inconsistent (ex, env.classes))
      else
        let env = { env with domains = MX.add r (enum, ex) env.domains } in
        if HSS.cardinal enum = 1 then
          let h' = HSS.choose enum in
          let env, eqs = deduce_is_constr uf r h' eqs env ex in
          env, eqs
        else env, eqs



(* dot it modulo equivalence class ? or is it sufficient ? *)
let add_eq uf hss sm1 sm2 dep env eqs =
  match sm1, sm2 with
  | Adt.Alien r, Adt.Constr { c_name = h; _ }
  | Adt.Constr { c_name = h; _ }, Adt.Alien r  ->
    let enum, ex =
      try MX.find r env.domains with Not_found -> hss, Ex.empty
    in
    let ex = Ex.union ex dep in
    if not (HSS.mem h enum) then raise (Ex.Inconsistent (ex, env.classes));
    let env, eqs = deduce_is_constr uf r h eqs env ex in
    {env with domains = MX.add r (HSS.singleton h, ex) env.domains} , eqs

  | Adt.Alien r1, Adt.Alien r2   ->
    let enum1,ex1 =
      try MX.find r1 env.domains with Not_found -> hss, Ex.empty in
    let enum2,ex2 =
      try MX.find r2 env.domains with Not_found -> hss, Ex.empty in
    let ex = Ex.union dep (Ex.union ex1 ex2) in
    let diff = HSS.inter enum1 enum2 in
    if HSS.is_empty diff then raise (Ex.Inconsistent (ex, env.classes));
    let domains = MX.add r1 (diff, ex) env.domains in
    let env = {env with domains = MX.add r2 (diff, ex) domains } in
    if HSS.cardinal diff = 1 then begin
      let h' = HSS.choose diff in
      let env, eqs = deduce_is_constr uf r1 h' eqs env ex in
      let env, eqs = deduce_is_constr uf r2 h' eqs env ex in
      env, eqs
    end
    else env, eqs

  |  _ -> env, eqs


let add_aux env r =
  Debug.add r;
  match embed r with
  | Adt.Alien r when not (MX.mem r env.domains) ->
    begin match values_of (X.type_info r) with
      | Some s -> { env with domains = MX.add r (s, Ex.empty) env.domains }
      | None ->
        env
    end
  | _ -> env

(* needed for models generation because fresh terms are not
   added with function add *)
let add_rec env r = List.fold_left add_aux env (X.leaves r)

let update_cs_modulo_eq r1 r2 ex env eqs =
  (* PB Here: even if Subst, we are not sure that it was
     r1 |-> r2, because LR.mkv_eq may swap r1 and r2 *)
  try
    let old = MX.find r1 env.selectors in
    if get_debug_adt () then
      Printer.print_dbg ~flushed:false
        ~module_name:"Adt_rel" ~function_name:"update_cs_modulo_eq"
        "update selectors modulo eq: %a |-> %a@ "
        X.print r1 X.print r2;
    let mhs = try MX.find r2 env.selectors with Not_found -> MHs.empty in
    let eqs = ref eqs in
    let _new =
      MHs.fold
        (fun hs l mhs ->
           if trivial_tester r2 hs then begin
             if get_debug_adt () then
               Printer.print_dbg
                 ~flushed:false ~header:false
                 "make deduction because %a ? %a is trivial@ "
                 X.print r2 Hs.print hs;
             List.iter
               (fun (a, dep) ->
                  eqs := (Sig_rel.LTerm a, dep, Th_util.Other) :: !eqs) l;
           end;
           let l = List.rev_map (fun (a, dep) -> a, Ex.union ex dep) l in
           MHs.add hs l mhs
        )old mhs
    in
    if get_debug_adt () then
      Printer.print_dbg ~header:false "";
    { env with selectors = MX.add r2 _new env.selectors }, !eqs
  with Not_found -> env, eqs

let remove_redundancies la =
  let cache = ref SLR.empty in
  List.filter
    (fun (a, _, _, _) ->
       let a = LR.make a in
       if SLR.mem a !cache then false
       else begin
         cache := SLR.add a !cache;
         true
       end
    )la

let assume env uf la =
  if get_disable_adts () then
    env, { Sig_rel.assume = []; remove = [] }
  else
    let la = remove_redundancies la in (* should be done globally in CCX *)
    let env = count_splits env la in
    let classes = Uf.cl_extract uf in
    let env = { env with classes = classes } in
    let aux bol r1 r2 dep env eqs = function
      | None     -> env, eqs
      | Some hss ->
        if bol then
          add_eq uf hss (embed r1) (embed r2) dep env eqs
        else
          add_diseq uf hss (embed r1) (embed r2) dep env eqs
    in
    Debug.print_env "before assume" env;
    let env, eqs =
      List.fold_left
        (fun (env,eqs) (a, b, c, d) ->
           Debug.assume a;
           match a, b, c, d with
           | Xliteral.Eq(r1,r2), _, ex, orig ->
             (* needed for models generation because fresh terms are not
                added with function add *)
             let env = add_rec (add_rec env r1) r2 in
             let env, eqs =
               if orig == Th_util.Subst then
                 update_cs_modulo_eq r1 r2 ex env eqs
               else
                 env, eqs
             in
             aux true  r1 r2 ex env eqs (values_of (X.type_info r1))

           | Xliteral.Distinct(false, [r1;r2]), _, ex, _ ->
             (* needed for models generation because fresh terms are not
                added with function add *)
             let env = add_rec (add_rec env r1) r2 in
             aux false r1 r2 ex env eqs (values_of (X.type_info r1))

           | Xliteral.Builtin(true, Sy.IsConstr hs, [e]), _, ex, _ ->
             assume_is_constr uf hs e ex env eqs

           | Xliteral.Builtin(false, Sy.IsConstr hs, [e]), _, ex, _
             [@ocaml.ppwarning "XXX: assume not (. ? .): reasoning missing ?"]
             ->
             assume_not_is_constr uf hs e ex env eqs

           | _ -> env, eqs

        ) (env,[]) la
    in
    let eqs = List.rev_append env.pending_deds eqs in
    let env = {env with pending_deds = []} in
    Debug.print_env "after assume" env;
    let print fmt (a,_,_) =
      match a with
      | Sig_rel.LTerm a -> fprintf fmt "%a" E.print a;
      | _ -> assert false
    in
    if get_debug_adt () then
      Printer.print_dbg ~module_name:"Adt_rel" ~function_name:"assume"
        "assume deduced %d equalities@ %a" (List.length eqs)
        (Printer.pp_list_no_space print) eqs;
    env, { Sig_rel.assume = eqs; remove = [] }


(* ################################################################ *)

let two = Numbers.Q.from_int 2

let case_split env _ ~for_model =
  if get_disable_adts () || not (get_enable_adts_cs()) then []
  else
    begin
      assert (not for_model);
      if get_debug_adt () then Debug.print_env "before cs" env;
      try
        let r, mhs = MX.choose env.selectors in
        if get_debug_adt () then
          Printer.print_dbg ~flushed:false
            ~module_name:"Adt_rel" ~function_name:"case_split"
            "found r = %a@ " X.print r;
        let hs, _ = MHs.choose mhs in
        if get_debug_adt () then
          Printer.print_dbg ~header:false
            "found hs = %a" Hs.print hs;
        (* cs on negative version would be better in general *)
        let cs =  LR.mkv_builtin false (Sy.IsConstr hs) [r] in
        [ cs, true, Th_util.CS(Th_util.Th_adt, two) ]
      with Not_found ->
        Debug.no_case_split ();
        []
    end

let query env uf (ra, _, ex, _) =
  if get_disable_adts () then None
  else
    try
      match ra with
      | Xliteral.Builtin(true, Sy.IsConstr hs, [e]) ->
        ignore (assume_is_constr uf hs e ex env []);
        None

      | Xliteral.Builtin(false, Sy.IsConstr hs, [e])
        [@ocaml.ppwarning "XXX: assume not (. ? .): reasoning missing ?"]
        ->
        ignore (assume_not_is_constr uf hs e ex env []);
        None
      | _ ->
        None
    with
    | Ex.Inconsistent (expl, classes) -> Some (expl, classes)


(* ################################################################ *)