Source file cnf.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
(******************************************************************************)
(*                                                                            *)
(*     The Alt-Ergo theorem prover                                            *)
(*     Copyright (C) 2006-2013                                                *)
(*                                                                            *)
(*     Sylvain Conchon                                                        *)
(*     Evelyne Contejean                                                      *)
(*                                                                            *)
(*     Francois Bobot                                                         *)
(*     Mohamed Iguernelala                                                    *)
(*     Stephane Lescuyer                                                      *)
(*     Alain Mebsout                                                          *)
(*                                                                            *)
(*     CNRS - INRIA - Universite Paris Sud                                    *)
(*                                                                            *)
(*     This file is distributed under the terms of the Apache Software        *)
(*     License version 2.0                                                    *)
(*                                                                            *)
(*  ------------------------------------------------------------------------  *)
(*                                                                            *)
(*     Alt-Ergo: The SMT Solver For Software Verification                     *)
(*     Copyright (C) 2013-2018 --- OCamlPro SAS                               *)
(*                                                                            *)
(*     This file is distributed under the terms of the Apache Software        *)
(*     License version 2.0                                                    *)
(*                                                                            *)
(******************************************************************************)

open Options
open Format
open Typed
open Commands

module E = Expr
module Sy = Symbols
module SE = E.Set

[@@ocaml.ppwarning "TODO: Change Symbols.Float to store FP numeral \
                    constants (eg, <24, -149> for single) instead of \
                    having terms"]
let make_adequate_app s l ty =
  let open Fpa_rounding in
  match s with
  | Sy.Name (hs, Sy.Other) when Options.get_use_fpa() ->
    let s, l  =
      match Hstring.view hs, l with
      | "float", [_;_;_;_] -> Sy.Op Sy.Float, l
      | "float32", [_;_;] -> Sy.Op Sy.Float,(E.int "24")::(E.int "149")::l
      | "float32d", [_] ->
        Sy.Op Sy.Float,
        (E.int "24")::
        (E.int "149")::
        _NearestTiesToEven__rounding_mode :: l

      | "float64", [_;_;] -> Sy.Op Sy.Float,(E.int "53")::(E.int "1074")::l
      | "float64d", [_] ->
        Sy.Op Sy.Float,
        (E.int "53")::
        (E.int "1074")::
        _NearestTiesToEven__rounding_mode :: l

      | "integer_round", [_;_] -> Sy.Op Sy.Integer_round, l

      | "fixed", [_;_;_;_] -> Sy.Op Sy.Fixed, l
      | "sqrt_real", [_] -> Sy.Op Sy.Sqrt_real, l
      | "sqrt_real_default", [_] -> Sy.Op Sy.Sqrt_real_default, l
      | "sqrt_real_excess", [_] -> Sy.Op Sy.Sqrt_real_excess, l
      | "abs_int", [_] ->  Sy.Op Sy.Abs_int, l
      | "abs_real", [_] ->  Sy.Op Sy.Abs_real, l
      | "real_of_int", [_] -> Sy.Op Sy.Real_of_int, l
      | "int_floor", [_] -> Sy.Op Sy.Int_floor, l
      | "int_ceil", [_] -> Sy.Op Sy.Int_ceil, l
      | "max_real", [_;_] -> Sy.Op Sy.Max_real, l
      | "max_int", [_;_] -> Sy.Op Sy.Max_int, l
      | "min_real", [_;_] -> Sy.Op Sy.Min_real, l
      | "min_int", [_;_] -> Sy.Op Sy.Min_int, l
      | "integer_log2", [_] -> Sy.Op Sy.Integer_log2, l

      (* should not happend thanks to well typedness *)
      | ("float"
        | "float32"
        | "float32d"
        | "float64"
        | "float64d"
        | "integer_round"
        | "fixed"
        | "sqrt_real"
        | "abs_int"
        | "abs_real"
        | "real_of_int"
        | "int_floor"
        | "int_ceil"
        | "max_real"
        | "max_int"
        | "min_real"
        | "min_int"
        | "integer_log2"
        | "power_of"), _ ->
        assert false
      | _ -> s, l
    in
    E.mk_term s l ty
  | _ -> E.mk_term s l ty

let varset_of_list =
  List.fold_left
    (fun acc (s,ty) ->
       SE.add (E.mk_term s [] (Ty.shorten ty)) acc) SE.empty

module ME =
  Map.Make
    (struct
      type t = E.t
      let compare a b =
        let c = E.depth a - E.depth b in
        if c <> 0 then c
        else E.compare a b
    end)

(* clean trigger:
   remove useless terms in multi-triggers after inlining of lets*)
let clean_trigger ~in_theory name trig =
  if in_theory then trig
  else
    match trig with
    | [] | [_] -> trig
    | _ ->
      let s =
        List.fold_left
          (fun s t ->
             if ME.mem t s then s
             else
               ME.add t (E.sub_terms SE.empty t) s
          )ME.empty trig
      in
      let res =
        ME.fold
          (fun t _ acc ->
             let rm = ME.remove t acc in
             if ME.exists (fun _ sub -> SE.mem t sub) rm then rm
             else acc
          ) s s
      in
      let sz_l = List.length trig in
      let sz_s = ME.cardinal res in
      if sz_l = sz_s then trig
      else
        let trig' = ME.fold (fun t _ acc -> t :: acc) res [] in
        if get_verbose () then
          Printer.print_dbg ~module_name:"Cnf"
            ~function_name:"clean_trigger"
            "AXIOM: %s@ \
             from multi-trig of sz %d : %a@ \
             to   multi-trig of sz %d : %a"
            name
            sz_l E.print_list trig sz_s E.print_list trig';
        trig'

let rec make_term up_qv quant_basename t =
  let rec mk_term { c = { tt_ty = ty; tt_desc = tt; _ }; _ } =
    let ty = Ty.shorten ty in
    match tt with
    | TTconst Ttrue ->
      E.vrai
    | TTconst Tfalse ->
      E.faux
    | TTconst Tvoid ->
      E.void
    | TTconst (Tint i) ->
      E.int i
    | TTconst (Treal n) ->
      E.real (Num.string_of_num n)
    | TTconst (Tbitv bt) ->
      E.bitv bt ty
    | TTvar s -> E.mk_term s [] ty
    | TTapp (s, l) ->
      make_adequate_app s (List.map mk_term l) ty

    | TTinInterval (e, lb, ub) ->
      assert (ty == Ty.Tbool);
      E.mk_term (Sy.mk_in lb ub) [mk_term e] ty

    | TTmapsTo (x, e) ->
      assert (ty == Ty.Tbool);
      E.mk_term (Sy.mk_maps_to x) [mk_term e] ty

    | TTinfix (t1, s, t2) ->
      E.mk_term s [mk_term t1; mk_term t2] ty

    | TTprefix ((Sy.Op Sy.Minus) as s, n) ->
      let t1 = if ty == Ty.Tint then E.int "0" else E.real "0"  in
      E.mk_term s [t1; mk_term n] ty
    | TTprefix _ ->
      assert false

    | TTget (t1, t2) ->
      E.mk_term (Sy.Op Sy.Get)
        [mk_term t1; mk_term t2] ty

    | TTset (t1, t2, t3) ->
      let t1 = mk_term t1 in
      let t2 = mk_term t2 in
      let t3 = mk_term t3 in
      E.mk_term (Sy.Op Sy.Set) [t1; t2; t3] ty

    | TTextract (t1, t2, t3) ->
      let t1 = mk_term t1 in
      let t2 = mk_term t2 in
      let t3 = mk_term t3 in
      E.mk_term (Sy.Op Sy.Extract) [t1; t2; t3] ty

    | TTconcat (t1, t2) ->
      E.mk_term (Sy.Op Sy.Concat)
        [mk_term t1; mk_term t2] ty

    | TTdot (t, s) ->
      E.mk_term (Sy.Op (Sy.Access s)) [mk_term t] ty

    | TTrecord lbs ->
      let lbs = List.map (fun (_, t) -> mk_term t) lbs in
      E.mk_term (Sy.Op Sy.Record) lbs ty

    | TTlet (binders, t2) ->
      let binders =
        List.rev_map (fun (s, t1) -> s, mk_term t1)
          (List.rev binders)
      in
      List.fold_left
        (fun acc (sy, e) ->
           E.mk_let sy e acc 0
           [@ocaml.ppwarning "TODO: should introduce fresh vars"]
        )(mk_term t2) binders

    | TTnamed(lbl, t) ->
      let t = mk_term t in
      E.add_label lbl t;
      t

    | TTite(cond, t1, t2) ->
      let cond =
        make_form
          up_qv quant_basename cond Loc.dummy
          ~decl_kind:E.Daxiom (* not correct, but not a problem *)
          ~toplevel:false
      in
      let t1 = mk_term t1 in
      let t2 = mk_term t2 in
      E.mk_ite cond t1 t2 0

    | TTproject (b, t, s) ->
      E.mk_term (Sy.destruct ~guarded:b (Hstring.view s)) [mk_term t] ty

    | TTmatch (e, pats) ->
      let e = make_term up_qv quant_basename e in
      let pats =
        List.rev_map (fun (p, t) ->
            p, make_term up_qv quant_basename t) (List.rev pats)
      in
      E.mk_match e pats

    | TTform e ->
      make_form
        up_qv quant_basename e Loc.dummy
        ~decl_kind:E.Daxiom (* not correct, but not a problem *)
        ~toplevel:false
  in
  mk_term t


and make_trigger ~in_theory name up_qv quant_basename hyp (e, from_user) =
  let content, guard = match e with
    | [{ c = { tt_desc = TTapp(s, t1::t2::l); _ }; _ }]
      when Sy.equal s Sy.fake_eq ->
      let trs = List.filter (fun t -> not (List.mem t l)) [t1; t2] in
      let trs = List.map (make_term up_qv quant_basename) trs in
      let lit =
        E.mk_eq ~iff:true
          (make_term up_qv quant_basename t1)
          (make_term up_qv quant_basename t2)
      in
      trs, Some lit

    | [{ c = { tt_desc = TTapp(s, t1::t2::l); _ }; _ }]
      when Sy.equal s Sy.fake_neq ->
      let trs = List.filter (fun t -> not (List.mem t l)) [t1; t2] in
      let trs = List.map (make_term up_qv quant_basename) trs in
      let lit =
        E.mk_distinct ~iff:true
          [make_term up_qv quant_basename t1;
           make_term up_qv quant_basename t2]
      in
      trs, Some lit

    | [{ c = { tt_desc = TTapp(s, t1::t2::l); _ }; _ }]
      when Sy.equal s Sy.fake_le ->
      let trs = List.filter (fun t -> not (List.mem t l)) [t1; t2] in
      let trs = List.map (make_term up_qv quant_basename) trs in
      let lit =
        E.mk_builtin ~is_pos:true Sy.LE
          [make_term up_qv quant_basename t1;
           make_term up_qv quant_basename t2]
      in
      trs, Some lit

    | [{ c = { tt_desc = TTapp(s, t1::t2::l); _ }; _ }]
      when Sy.equal s Sy.fake_lt ->
      let trs = List.filter (fun t -> not (List.mem t l)) [t1; t2] in
      let trs = List.map (make_term up_qv quant_basename) trs in
      let lit =
        E.mk_builtin ~is_pos:true Sy.LT
          [make_term up_qv quant_basename t1;
           make_term up_qv quant_basename t2]
      in
      trs, Some lit

    | lt -> List.map (make_term up_qv quant_basename) lt, None
  in
  let t_depth =
    List.fold_left (fun z t -> max z (E.depth t)) 0 content in
  (* clean trigger:
     remove useless terms in multi-triggers after inlining of lets*)
  let content = clean_trigger ~in_theory name content in
  { E.content ; guard ; t_depth; semantic = []; (* will be set by theories *)
    hyp; from_user;
  }

and make_form up_qv name_base ~toplevel f loc ~decl_kind : E.t =
  let name_tag = ref 0 in
  let rec mk_form up_qv ~toplevel c id =
    match c with
    | TFatom a ->
      begin match a.c with
        | TAtrue ->
          E.vrai
        | TAfalse ->
          E.faux
        | TAeq [t1;t2] ->
          E.mk_eq ~iff:true
            (make_term up_qv name_base t1)
            (make_term up_qv name_base t2)
        | TApred (t, negated) ->
          let res = make_term up_qv name_base t in
          if negated then E.neg res else res

        | TAneq lt | TAdistinct lt ->
          let lt = List.map (make_term up_qv name_base) lt in
          E.mk_distinct ~iff:true lt
        | TAle [t1;t2] ->
          E.mk_builtin ~is_pos:true Sy.LE
            [make_term up_qv name_base t1;
             make_term up_qv name_base t2]
        | TAlt [t1;t2] ->
          begin match t1.c.tt_ty with
            | Ty.Tint ->
              let one =
                {c = {tt_ty = Ty.Tint;
                      tt_desc = TTconst(Tint "1")}; annot = t1.annot} in
              let tt2 =
                E.mk_term (Sy.Op Sy.Minus)
                  [make_term up_qv name_base t2;
                   make_term up_qv name_base one]
                  Ty.Tint
              in
              E.mk_builtin ~is_pos:true Sy.LE
                [make_term up_qv name_base t1; tt2]
            | _ ->
              E.mk_builtin ~is_pos:true Sy.LT
                [make_term up_qv name_base t1;
                 make_term up_qv name_base t2]
          end
        | TTisConstr (t, lbl) ->
          E.mk_builtin ~is_pos:true (Sy.IsConstr lbl)
            [make_term up_qv name_base t]

        | _ -> assert false
      end

    | TFop(((OPand | OPor | OPxor) as op),[f1;f2]) ->
      let ff1 = mk_form up_qv ~toplevel:false f1.c f1.annot in
      let ff2 = mk_form up_qv ~toplevel:false f2.c f2.annot in
      begin match op with
        | OPand -> E.mk_and ff1 ff2 false id
        | OPor -> E.mk_or ff1 ff2 false id
        | OPxor -> E.mk_xor ff1 ff2 id
        | _ -> assert false
      end
    | TFop(OPimp,[f1;f2]) ->
      let ff1 = mk_form up_qv ~toplevel:false f1.c f1.annot in
      let ff2 = mk_form up_qv ~toplevel:false f2.c f2.annot in
      E.mk_imp ff1 ff2 id
    | TFop(OPnot,[f]) ->
      E.neg @@ mk_form up_qv ~toplevel:false f.c f.annot
    | TFop(OPif, [cond; f2;f3]) ->
      let cond = mk_form up_qv ~toplevel:false cond.c cond.annot in
      let ff2  = mk_form up_qv ~toplevel:false f2.c f2.annot in
      let ff3  = mk_form up_qv ~toplevel:false f3.c f3.annot in
      E.mk_if cond ff2 ff3 id
    | TFop(OPiff,[f1;f2]) ->
      let ff1 = mk_form up_qv ~toplevel:false f1.c f1.annot in
      let ff2 = mk_form up_qv ~toplevel:false f2.c f2.annot in
      E.mk_iff ff1 ff2 id
    | (TFforall qf | TFexists qf) as f ->
      let name =
        if !name_tag = 0 then name_base
        else sprintf "#%s#sub-%d" name_base !name_tag
      in
      incr name_tag;
      let up_qv =
        List.fold_left (fun z (sy,ty) -> Sy.Map.add sy ty z) up_qv qf.qf_bvars
      in
      let qvars = varset_of_list qf.qf_bvars in
      let binders = E.mk_binders qvars in
      (*let upvars = varset_of_list qf.qf_upvars in*)
      let ff =
        mk_form up_qv ~toplevel:false qf.qf_form.c qf.qf_form.annot in

      let hyp =
        List.map (fun f -> mk_form up_qv ~toplevel:false f.c f.annot) qf.qf_hyp
      in
      let in_theory = decl_kind == E.Dtheory in
      let trs =
        List.map
          (make_trigger ~in_theory name up_qv name_base hyp) qf.qf_triggers in
      let func = match f with
        | TFforall _ -> E.mk_forall
        | TFexists _ -> E.mk_exists
        | _ -> assert false
      in
      func name loc binders trs ff id ~toplevel ~decl_kind

    | TFlet(_,binders,lf) ->
      let binders =
        List.rev_map
          (fun (sy, e) ->
             sy,
             match e with
             | TletTerm t -> make_term up_qv name_base t
             | TletForm g -> mk_form up_qv ~toplevel:false g.c g.annot
          )(List.rev binders)
      in
      let res = mk_form up_qv ~toplevel:false lf.c lf.annot in
      List.fold_left
        (fun acc (sy, e) ->
           E.mk_let sy e acc id
           [@ocaml.ppwarning "TODO: should introduce fresh vars"]
        )res binders

    | TFnamed(lbl, f) ->
      let ff = mk_form up_qv ~toplevel:false f.c f.annot in
      E.add_label lbl ff;
      ff

    | TFmatch (e, pats) ->
      let e = make_term up_qv name_base e in
      let pats =
        List.rev_map (fun (p, f) ->
            p, mk_form up_qv ~toplevel:false f.c f.annot)
          (List.rev pats)
      in
      E.mk_match e pats

    | _ -> assert false
  in
  mk_form up_qv ~toplevel f.c f.annot

(* wrapper of function make_form *)
let make_form name f loc ~decl_kind =
  let ff =
    make_form Sy.Map.empty name f loc ~decl_kind ~toplevel:true
  in
  assert (Sy.Map.is_empty (E.free_vars ff Sy.Map.empty));
  let ff = E.purify_form ff in
  if Ty.Svty.is_empty (E.free_type_vars ff) then ff
  else
    let id = E.id ff in
    E.mk_forall name loc Symbols.Map.empty [] ff id ~toplevel:true ~decl_kind

let mk_assume acc f name loc =
  let ff = make_form name f loc ~decl_kind:E.Daxiom in
  {st_decl=Assume(name, ff, true) ; st_loc=loc} :: acc


(* extract defining term of the function or predicate. From the
   transformation of the parsed AST above, the typed AST is either of the
   form:
   - "forall x. defn <-> typed_e", if defn is a pred defn or returns a
     result of type bool
   - "forall x. defn = typed_e", if defn is a function defn whose
     return type is not bool

   where forall x. is optional (like in 'predicate p = q or r')
*)
let defining_term f =
  if get_verbose () then
    Format.eprintf "defining term of %a@." Typed.print_formula f;
  match f.c with
  | TFforall {qf_form={c=TFop(OPiff,[{c=TFatom {c=TApred(d,_);_};_};_]); _}; _}
  | TFforall {qf_form={c=TFatom {c=TAeq[d;_];_}; _}; _}
  | TFop(OPiff,[{c=TFatom {c=TApred(d,_);_};_};_])
  | TFatom {c=TAeq[d;_];_} ->
    d
  | _ -> assert false

let mk_function acc f name loc =
  let defn = defining_term f in
  let defn = make_term Sy.Map.empty "" defn in
  let ff = make_form name f loc ~decl_kind:(E.Dfunction defn) in
  {st_decl=Assume(name, ff, true) ; st_loc=loc} :: acc

let mk_preddef acc f name loc =
  let defn = defining_term f in
  let defn = make_term Sy.Map.empty "" defn in
  let ff = make_form name f loc ~decl_kind: (E.Dpredicate defn) in
  {st_decl=PredDef (ff, name) ; st_loc=loc} :: acc

let mk_query acc n f loc sort =
  let ff = make_form "" f loc ~decl_kind:E.Dgoal in
  {st_decl=Query(n, ff, sort) ; st_loc=loc} :: acc

let make_rule ({rwt_left = t1; rwt_right = t2; rwt_vars} as r) =
  let up_qv =
    List.fold_left (fun z (sy, ty) -> Sy.Map.add sy ty z) Sy.Map.empty rwt_vars
  in
  let s1 = make_term up_qv "" t1 in
  let s2 = make_term up_qv "" t2 in
  assert (E.is_pure s1);
  assert (E.is_pure s2);
  { r with rwt_left = s1; rwt_right = s2 }

let mk_theory acc l th_name extends _loc =
  List.fold_left
    (fun acc e ->
       let loc, ax_name, f, axiom_kind =
         match e.c with
         | TAxiom (loc, name, ax_kd, f) -> loc, name, f, ax_kd
         | _ -> assert false
       in
       let ax_form = make_form ax_name f loc ~decl_kind:E.Dtheory in
       let th_elt = {Expr.th_name; axiom_kind; extends; ax_form; ax_name} in
       {st_decl=ThAssume th_elt ; st_loc=loc} :: acc
    )acc l

let make acc d =
  match d.c with
  | TPush (loc,n) -> {st_decl=Push n; st_loc=loc} :: acc
  | TPop (loc,n) -> {st_decl=Pop n; st_loc=loc} :: acc
  | TTheory(loc, name, ext, l) -> mk_theory acc l name ext loc
  | TAxiom(loc, name, Util.Default, f) -> mk_assume acc f name loc
  | TAxiom(_, _, Util.Propagator, _) -> assert false
  | TRewriting(loc, _, lr) ->
    {st_decl=RwtDef(List.map make_rule lr); st_loc=loc} :: acc
  | TGoal(loc, sort, n, f) -> mk_query acc n f loc sort
  | TPredicate_def(loc, n, _args, f) -> mk_preddef acc f n loc
  | TFunction_def(loc, n, _args, _rety, f) -> mk_function acc f n loc
  | TTypeDecl _ | TLogic _  -> acc


let make_list l = List.fold_left make [] (List.rev l)