1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
open Univ
open UVars
module G = AcyclicGraph.Make(struct
type t = Level.t
module Set = Level.Set
module Map = Level.Map
let equal = Level.equal
let compare = Level.compare
let raw_pr = Level.raw_pr
end)
type t = {
graph: G.t;
type_in_type : bool;
}
type path_explanation = G.explanation Lazy.t
type explanation =
| Path of path_explanation
| Other of Pp.t
type univ_variable_printers = (Sorts.QVar.t -> Pp.t) * (Level.t -> Pp.t)
type univ_inconsistency = univ_variable_printers option * (constraint_type * Sorts.t * Sorts.t * explanation option)
exception UniverseInconsistency of univ_inconsistency
type 'a check_function = t -> 'a -> 'a -> bool
let set_type_in_type b g = {g with type_in_type=b}
let type_in_type g = g.type_in_type
let check_smaller_expr g (u,n) (v,m) =
let diff = n - m in
match diff with
| 0 -> G.check_leq g.graph u v
| 1 -> G.check_lt g.graph u v
| x when x < 0 -> G.check_leq g.graph u v
| _ -> false
let exists_bigger g ul l =
Universe.exists (fun ul' ->
check_smaller_expr g ul ul') l
let real_check_leq g u v =
Universe.for_all (fun ul -> exists_bigger g ul v) u
let check_leq g u v =
type_in_type g || Universe.equal u v || (real_check_leq g u v)
let check_eq g u v =
type_in_type g || Universe.equal u v ||
(real_check_leq g u v && real_check_leq g v u)
let check_eq_level g u v =
u == v || type_in_type g || G.check_eq g.graph u v
let empty_universes = {graph=G.empty; type_in_type=false}
let initial_universes =
let big_rank = 1000000 in
let g = G.empty in
let g = G.add ~rank:big_rank Level.set g in
{empty_universes with graph=g}
let initial_universes_with g = {g with graph=initial_universes.graph}
let enforce_constraint (u,d,v) g =
match d with
| Le -> G.enforce_leq u v g
| Lt -> G.enforce_lt u v g
| Eq -> G.enforce_eq u v g
let enforce_constraint0 cst g = match enforce_constraint cst g.graph with
| None -> None
| Some g' ->
if g' == g.graph then Some g
else Some { g with graph = g' }
let enforce_constraint cst g = match enforce_constraint0 cst g with
| None ->
if not (type_in_type g) then
let (u, c, v) = cst in
let e = lazy (G.get_explanation cst g.graph) in
let mk u = Sorts.sort_of_univ @@ Universe.make u in
raise (UniverseInconsistency (None, (c, mk u, mk v, Some (Path e))))
else g
| Some g -> g
let merge_constraints csts g = Constraints.fold enforce_constraint csts g
let check_constraint { graph = g; type_in_type } (u,d,v) =
type_in_type
|| match d with
| Le -> G.check_leq g u v
| Lt -> G.check_lt g u v
| Eq -> G.check_eq g u v
let check_constraints csts g = Constraints.for_all (check_constraint g) csts
let leq_expr (u,m) (v,n) =
let d = match m - n with
| 1 -> Lt
| diff -> assert (diff <= 0); Le
in
(u,d,v)
let enforce_leq_alg u v g =
let open Util in
let enforce_one (u,v) = function
| Inr _ as orig -> orig
| Inl (cstrs,g) as orig ->
if check_smaller_expr g u v then orig
else
(let c = leq_expr u v in
match enforce_constraint0 c g with
| Some g -> Inl (Constraints.add c cstrs,g)
| None -> Inr (c, g))
in
let c = List.map (fun u -> List.map (fun v -> (u,v)) (Universe.repr v)) (Universe.repr u) in
let c = List.cartesians enforce_one (Inl (Constraints.empty,g)) c in
let order x y = match x, y with
| Inr _, Inr _ -> 0
| Inl _, Inr _ -> -1
| Inr _, Inl _ -> 1
| Inl (c,_), Inl (c',_) ->
Int.compare (Constraints.cardinal c) (Constraints.cardinal c')
in
match List.min order c with
| Inl x -> x
| Inr ((u, c, v), g) ->
let e = lazy (G.get_explanation (u, c, v) g.graph) in
let mk u = Sorts.sort_of_univ @@ Universe.make u in
let e = UniverseInconsistency (None, (c, mk u, mk v, Some (Path e))) in
raise e
module Bound =
struct
type t = Prop | Set
end
exception AlreadyDeclared = G.AlreadyDeclared
let add_universe u ~lbound ~strict g = match lbound with
| Bound.Set ->
let graph = G.add u g.graph in
let d = if strict then Lt else Le in
enforce_constraint (Level.set, d, u) { g with graph }
| Bound.Prop ->
{ g with graph = G.add u g.graph }
exception UndeclaredLevel = G.Undeclared
let check_declared_universes g l =
G.check_declared g.graph l
let constraints_of_universes g =
let add cst accu = Constraints.add cst accu in
G.constraints_of g.graph add Constraints.empty
let constraints_for ~kept g =
let add cst accu = Constraints.add cst accu in
G.constraints_for ~kept g.graph add Constraints.empty
(** Subtyping of polymorphic contexts *)
let check_subtype univs ctxT ctx =
if eq_sizes (AbstractContext.size ctxT) (AbstractContext.size ctx) then
let uctx = AbstractContext.repr ctx in
let inst = UContext.instance uctx in
let cst = UContext.constraints uctx in
let cstT = UContext.constraints (AbstractContext.repr ctxT) in
let push accu v = add_universe v ~lbound:Bound.Set ~strict:false accu in
let univs = Array.fold_left push univs (snd (Instance.to_array inst)) in
let univs = merge_constraints cstT univs in
check_constraints cst univs
else false
(** Instances *)
let check_eq_instances g t1 t2 =
let qt1, ut1 = Instance.to_array t1 in
let qt2, ut2 = Instance.to_array t2 in
CArray.equal Sorts.Quality.equal qt1 qt2
&& CArray.equal (check_eq_level g) ut1 ut2
let domain g = G.domain g.graph
let choose p g u = G.choose p g.graph u
let check_universes_invariants g = G.check_invariants ~required_canonical:Level.is_set g.graph
(** Sort comparison *)
open Sorts
let get_algebraic = function
| Prop | SProp -> assert false
| Set -> Universe.type0
| Type u | QSort (_, u) -> u
let check_eq_sort ugraph s1 s2 = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> true
| (SProp, _) | (_, SProp) | (Prop, _) | (_, Prop) ->
type_in_type ugraph
| (Type _ | Set), (Type _ | Set) ->
check_eq ugraph (get_algebraic s1) (get_algebraic s2)
| QSort (q1, u1), QSort (q2, u2) ->
QVar.equal q1 q2 && check_eq ugraph u1 u2
| (QSort _, (Type _ | Set)) | ((Type _ | Set), QSort _) -> false
let check_leq_sort ugraph s1 s2 = match s1, s2 with
| (SProp, SProp) | (Prop, Prop) | (Set, Set) -> true
| (SProp, _) -> type_in_type ugraph
| (Prop, SProp) -> type_in_type ugraph
| (Prop, (Set | Type _)) -> true
| (Prop, QSort _) -> false
| (_, (SProp | Prop)) -> type_in_type ugraph
| (Type _ | Set), (Type _ | Set) ->
check_leq ugraph (get_algebraic s1) (get_algebraic s2)
| QSort (q1, u1), QSort (q2, u2) ->
QVar.equal q1 q2 && check_leq ugraph u1 u2
| (QSort _, (Type _ | Set)) | ((Type _ | Set), QSort _) -> false
(** Pretty-printing *)
let pr_pmap sep pr map =
let cmp (u,_) (v,_) = Level.compare u v in
Pp.prlist_with_sep sep pr (List.sort cmp (Level.Map.bindings map))
let pr_arc prl = let open Pp in
function
| u, G.Node ltle ->
if Level.Map.is_empty ltle then mt ()
else
prl u ++ str " " ++
v 0
(pr_pmap spc (fun (v, strict) ->
(if strict then str "< " else str "<= ") ++ prl v)
ltle) ++
fnl ()
| u, G.Alias v ->
prl u ++ str " = " ++ prl v ++ fnl ()
type node = G.node =
| Alias of Level.t
| Node of bool Level.Map.t
let repr g = G.repr g.graph
let pr_universes prl g = pr_pmap Pp.mt (pr_arc prl) g
open Pp
let explain_universe_inconsistency default_prq default_prl (printers, (o,u,v,p) : univ_inconsistency) =
let prq, prl = match printers with
| Some (prq, prl) -> prq, prl
| None -> default_prq, default_prl
in
let pr_uni u = match u with
| Sorts.Set -> str "Set"
| Sorts.Prop -> str "Prop"
| Sorts.SProp -> str "SProp"
| Sorts.Type u -> Universe.pr prl u
| Sorts.QSort (q, u) -> str "Type@{" ++ prq q ++ str " | " ++ Universe.pr prl u ++ str"}"
in
let pr_rel = function
| Eq -> str"=" | Lt -> str"<" | Le -> str"<="
in
let reason = match p with
| None -> mt()
| Some (Other p) -> spc() ++ p
| Some (Path p) ->
let pstart, p = Lazy.force p in
if p = [] then mt ()
else
str " because" ++ spc() ++ prl pstart ++
prlist (fun (r,v) -> spc() ++ pr_rel r ++ str" " ++ prl v) p
in
str "Cannot enforce" ++ spc() ++ pr_uni u ++ spc() ++
pr_rel o ++ spc() ++ pr_uni v ++ reason