1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
open Univ
module G = AcyclicGraph.Make(struct
type t = Level.t
module Set = LSet
module Map = LMap
module Constraint = Constraint
let equal = Level.equal
let compare = Level.compare
type explanation = Univ.explanation
let error_inconsistency d u v p =
raise (UniverseInconsistency (d,Universe.make u, Universe.make v, p))
let pr = Level.pr
end) [@@inlined]
type t = {
graph: G.t;
sprop_cumulative : bool;
type_in_type : bool;
}
type 'a check_function = t -> 'a -> 'a -> bool
let g_map f g =
let g' = f g.graph in
if g.graph == g' then g
else {g with graph=g'}
let set_cumulative_sprop b g = {g with sprop_cumulative=b}
let set_type_in_type b g = {g with type_in_type=b}
let type_in_type g = g.type_in_type
let check_smaller_expr g (u,n) (v,m) =
let diff = n - m in
match diff with
| 0 -> G.check_leq g.graph u v
| 1 -> G.check_lt g.graph u v
| x when x < 0 -> G.check_leq g.graph u v
| _ -> false
let exists_bigger g ul l =
Universe.exists (fun ul' ->
check_smaller_expr g ul ul') l
let real_check_leq g u v =
Universe.for_all (fun ul -> exists_bigger g ul v) u
let check_leq g u v =
type_in_type g ||
Universe.equal u v || (g.sprop_cumulative && Universe.is_sprop u) ||
(not (Universe.is_sprop u) && not (Universe.is_sprop v) &&
(is_type0m_univ u ||
real_check_leq g u v))
let check_eq g u v =
type_in_type g ||
Universe.equal u v ||
(not (Universe.is_sprop u || Universe.is_sprop v) &&
(real_check_leq g u v && real_check_leq g v u))
let check_eq_level g u v =
u == v ||
type_in_type g ||
(not (Level.is_sprop u || Level.is_sprop v) && G.check_eq g.graph u v)
let empty_universes = {graph=G.empty; sprop_cumulative=false; type_in_type=false}
let initial_universes =
let big_rank = 1000000 in
let g = G.empty in
let g = G.add ~rank:big_rank Level.prop g in
let g = G.add ~rank:big_rank Level.set g in
{empty_universes with graph=G.enforce_lt Level.prop Level.set g}
let initial_universes_with g = {g with graph=initial_universes.graph}
let enforce_constraint (u,d,v) g =
match d with
| Le -> G.enforce_leq u v g
| Lt -> G.enforce_lt u v g
| Eq -> G.enforce_eq u v g
let enforce_constraint (u,d,v as cst) g =
match Level.is_sprop u, d, Level.is_sprop v with
| false, _, false -> g_map (enforce_constraint cst) g
| true, (Eq|Le), true -> g
| true, Le, false when g.sprop_cumulative -> g
| _ -> raise (UniverseInconsistency (d,Universe.make u, Universe.make v, None))
let enforce_constraint cst g =
if not (type_in_type g) then enforce_constraint cst g
else try enforce_constraint cst g with UniverseInconsistency _ -> g
let merge_constraints csts g = Constraint.fold enforce_constraint csts g
let check_constraint g (u,d,v) =
match d with
| Le -> G.check_leq g u v
| Lt -> G.check_lt g u v
| Eq -> G.check_eq g u v
let check_constraint g (u,d,v as cst) =
match Level.is_sprop u, d, Level.is_sprop v with
| false, _, false -> check_constraint g.graph cst
| true, (Eq|Le), true -> true
| true, Le, false -> g.sprop_cumulative || type_in_type g
| _ -> type_in_type g
let check_constraints csts g = Constraint.for_all (check_constraint g) csts
let leq_expr (u,m) (v,n) =
let d = match m - n with
| 1 -> Lt
| diff -> assert (diff <= 0); Le
in
(u,d,v)
let enforce_leq_alg u v g =
let open Util in
let enforce_one (u,v) = function
| Inr _ as orig -> orig
| Inl (cstrs,g) as orig ->
if check_smaller_expr g u v then orig
else
(let c = leq_expr u v in
match enforce_constraint c g with
| g -> Inl (Constraint.add c cstrs,g)
| exception (UniverseInconsistency _ as e) -> Inr e)
in
let c = List.map (fun u -> List.map (fun v -> (u,v)) (Universe.repr v)) (Universe.repr u) in
let c = List.cartesians enforce_one (Inl (Constraint.empty,g)) c in
let order x y = match x, y with
| Inr _, Inr _ -> 0
| Inl _, Inr _ -> -1
| Inr _, Inl _ -> 1
| Inl (c,_), Inl (c',_) ->
Int.compare (Constraint.cardinal c) (Constraint.cardinal c')
in
match List.min order c with
| Inl x -> x
| Inr e -> raise e
let enforce_leq_alg u v g =
match Universe.is_sprop u, Universe.is_sprop v with
| true, true -> Constraint.empty, g
| false, false -> enforce_leq_alg u v g
| left, _ ->
if left && g.sprop_cumulative then Constraint.empty, g
else raise (UniverseInconsistency (Le, u, v, None))
let enforce_leq_alg u v g =
let _,g as cg = enforce_leq_alg u v g in
assert (check_leq g u v);
cg
module Bound =
struct
type t = Prop | Set
end
exception AlreadyDeclared = G.AlreadyDeclared
let add_universe u ~lbound ~strict g =
let lbound = match lbound with Bound.Prop -> Level.prop | Bound.Set -> Level.set in
let graph = G.add u g.graph in
let d = if strict then Lt else Le in
enforce_constraint (lbound,d,u) {g with graph}
let add_universe_unconstrained u g = {g with graph=G.add u g.graph}
exception UndeclaredLevel = G.Undeclared
let check_declared_universes g l = G.check_declared g.graph (LSet.remove Level.sprop l)
let constraints_of_universes g = G.constraints_of g.graph
let constraints_for ~kept g = G.constraints_for ~kept:(LSet.remove Level.sprop kept) g.graph
(** Subtyping of polymorphic contexts *)
let check_subtype ~lbound univs ctxT ctx =
if AUContext.size ctxT == AUContext.size ctx then
let (inst, cst) = UContext.dest (AUContext.repr ctx) in
let cstT = UContext.constraints (AUContext.repr ctxT) in
let push accu v = add_universe v ~lbound ~strict:false accu in
let univs = Array.fold_left push univs (Instance.to_array inst) in
let univs = merge_constraints cstT univs in
check_constraints cst univs
else false
(** Instances *)
let check_eq_instances g t1 t2 =
let t1 = Instance.to_array t1 in
let t2 = Instance.to_array t2 in
t1 == t2 ||
(Int.equal (Array.length t1) (Array.length t2) &&
let rec aux i =
(Int.equal i (Array.length t1)) || (check_eq_level g t1.(i) t2.(i) && aux (i + 1))
in aux 0)
let domain g = LSet.add Level.sprop (G.domain g.graph)
let choose p g u = if Level.is_sprop u
then if p u then Some u else None
else G.choose p g.graph u
let check_universes_invariants g = G.check_invariants ~required_canonical:Level.is_small g.graph
(** Pretty-printing *)
let pr_pmap sep pr map =
let cmp (u,_) (v,_) = Level.compare u v in
Pp.prlist_with_sep sep pr (List.sort cmp (LMap.bindings map))
let pr_arc prl = let open Pp in
function
| u, G.Node ltle ->
if LMap.is_empty ltle then mt ()
else
prl u ++ str " " ++
v 0
(pr_pmap spc (fun (v, strict) ->
(if strict then str "< " else str "<= ") ++ prl v)
ltle) ++
fnl ()
| u, G.Alias v ->
prl u ++ str " = " ++ prl v ++ fnl ()
type node = G.node =
| Alias of Level.t
| Node of bool LMap.t
let repr g = G.repr g.graph
let pr_universes prl g = pr_pmap Pp.mt (pr_arc prl) g