1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
open Names
module RelDecl = Context.Rel.Declaration
exception LocalOccur
let closedn n c =
let rec closed_rec n c = match Constr.kind c with
| Constr.Rel m -> if m>n then raise LocalOccur
| _ -> Constr.iter_with_binders succ closed_rec n c
in
try closed_rec n c; true with LocalOccur -> false
let closed0 c = closedn 0 c
let noccurn n term =
let rec occur_rec n c = match Constr.kind c with
| Constr.Rel m -> if Int.equal m n then raise LocalOccur
| _ -> Constr.iter_with_binders succ occur_rec n c
in
try occur_rec n term; true with LocalOccur -> false
let noccur_between n m term =
let rec occur_rec n c = match Constr.kind c with
| Constr.Rel p -> if n<=p && p<n+m then raise LocalOccur
| _ -> Constr.iter_with_binders succ occur_rec n c
in
try occur_rec n term; true with LocalOccur -> false
let isMeta c = match Constr.kind c with
| Constr.Meta _ -> true
| _ -> false
let noccur_with_meta n m term =
let rec occur_rec n c = match Constr.kind c with
| Constr.Rel p -> if n<=p && p<n+m then raise LocalOccur
| Constr.App(f,_cl) ->
(match Constr.kind f with
| Constr.Cast (c,_,_) when isMeta c -> ()
| Constr.Meta _ -> ()
| _ -> Constr.iter_with_binders succ occur_rec n c)
| Constr.Evar (_, _) -> ()
| _ -> Constr.iter_with_binders succ occur_rec n c
in
try (occur_rec n term; true) with LocalOccur -> false
let exliftn = Constr.exliftn
let liftn = Constr.liftn
let lift = Constr.lift
type info = Closed | Open | Unknown
type 'a substituend = { mutable sinfo: info; sit: 'a }
let lift_substituend depth s =
match s.sinfo with
| Closed -> s.sit
| Open -> lift depth s.sit
| Unknown ->
let sit = s.sit in
if closed0 sit then
let () = s.sinfo <- Closed in
sit
else
let () = s.sinfo <- Open in
lift depth sit
let make_substituend c = { sinfo=Unknown; sit=c }
let substn_many lamv n c =
let lv = Array.length lamv in
if Int.equal lv 0 then c
else
let rec substrec depth c = match Constr.kind c with
| Constr.Rel k ->
if k<=depth then c
else if k-depth <= lv then lift_substituend depth (Array.unsafe_get lamv (k-depth-1))
else Constr.mkRel (k-lv)
| _ -> Constr.map_with_binders succ substrec depth c in
substrec n c
let make_subst = function
| [] -> [||]
| hd :: tl ->
let len = List.length tl in
let subst = Array.make (1 + len) (make_substituend hd) in
let s = ref tl in
for i = 1 to len do
match !s with
| [] -> assert false
| x :: tl ->
Array.unsafe_set subst i (make_substituend x);
s := tl
done;
subst
type substl = Constr.t list
let substnl laml n c = substn_many (make_subst laml) n c
let substl laml c = substn_many (make_subst laml) 0 c
let subst1 lam c = substn_many [|make_substituend lam|] 0 c
let substnl_decl laml k r = RelDecl.map_constr (fun c -> substnl laml k c) r
let substl_decl laml r = RelDecl.map_constr (fun c -> substnl laml 0 c) r
let subst1_decl lam r = RelDecl.map_constr (fun c -> subst1 lam c) r
let subst_of_rel_context_instance sign l =
let rec aux subst sign l =
let open RelDecl in
match sign, l with
| LocalAssum _ :: sign', a::args' -> aux (a::subst) sign' args'
| LocalDef (_,c,_)::sign', args' ->
aux (substl subst c :: subst) sign' args'
| [], [] -> subst
| _ -> CErrors.anomaly (Pp.str "Instance and signature do not match.")
in aux [] (List.rev sign) l
let adjust_rel_to_rel_context sign n =
let rec aux sign =
let open RelDecl in
match sign with
| LocalAssum _ :: sign' -> let (n',p) = aux sign' in (n'+1,p)
| LocalDef (_,_c,_)::sign' -> let (n',p) = aux sign' in (n'+1,if n'<n then p+1 else p)
| [] -> (0,n)
in snd (aux sign)
let rec thin_val = function
| [] -> []
| (id, c) :: tl ->
match Constr.kind c with
| Constr.Var v ->
if Id.equal id v then thin_val tl
else (id, make_substituend c) :: (thin_val tl)
| _ -> (id, make_substituend c) :: (thin_val tl)
let rec find_var id = function
| [] -> raise Not_found
| (idc, c) :: subst ->
if Id.equal id idc then c
else find_var id subst
let replace_vars var_alist x =
let var_alist = thin_val var_alist in
match var_alist with
| [] -> x
| _ ->
let rec substrec n c = match Constr.kind c with
| Constr.Var x ->
(try lift_substituend n (find_var x var_alist)
with Not_found -> c)
| _ -> Constr.map_with_binders succ substrec n c
in
substrec 0 x
let subst_var str t = replace_vars [(str, Constr.mkRel 1)] t
let substn_vars p vars c =
let _,subst =
List.fold_left (fun (n,l) var -> ((n+1),(var,Constr.mkRel n)::l)) (p,[]) vars
in replace_vars (List.rev subst) c
let subst_vars subst c = substn_vars 1 subst c
(** Universe substitutions *)
open Constr
let subst_univs_level_constr subst c =
if Univ.is_empty_level_subst subst then c
else
let f = Univ.Instance.subst_fn (Univ.subst_univs_level_level subst) in
let changed = ref false in
let rec aux t =
match kind t with
| Const (c, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; mkConstU (c, u'))
| Ind (i, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; mkIndU (i, u'))
| Construct (c, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (changed := true; mkConstructU (c, u'))
| Sort (Sorts.Type u) ->
let u' = Univ.subst_univs_level_universe subst u in
if u' == u then t else
(changed := true; mkSort (Sorts.sort_of_univ u'))
| Case (ci, u, pms, p, CaseInvert {indices}, c, br) ->
if Univ.Instance.is_empty u then Constr.map aux t
else
let u' = f u in
if u' == u then Constr.map aux t
else (changed:=true; Constr.map aux (mkCase (ci,u',pms,p,CaseInvert {indices},c,br)))
| Case (ci, u, pms, p, NoInvert, c, br) ->
if Univ.Instance.is_empty u then Constr.map aux t
else
let u' = f u in
if u' == u then Constr.map aux t
else
(changed := true; Constr.map aux (mkCase (ci, u', pms, p, NoInvert, c, br)))
| Array (u,elems,def,ty) ->
let u' = f u in
let elems' = CArray.Smart.map aux elems in
let def' = aux def in
let ty' = aux ty in
if u == u' && elems == elems' && def == def' && ty == ty' then t
else (changed := true; mkArray (u',elems',def',ty'))
| _ -> Constr.map aux t
in
let c' = aux c in
if !changed then c' else c
let subst_univs_level_context s =
Context.Rel.map (subst_univs_level_constr s)
let subst_instance_constr subst c =
if Univ.Instance.is_empty subst then c
else
let f u = Univ.subst_instance_instance subst u in
let rec aux t =
match kind t with
| Const (c, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (mkConstU (c, u'))
| Ind (i, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (mkIndU (i, u'))
| Construct (c, u) ->
if Univ.Instance.is_empty u then t
else
let u' = f u in
if u' == u then t
else (mkConstructU (c, u'))
| Sort (Sorts.Type u) ->
let u' = Univ.subst_instance_universe subst u in
if u' == u then t else
(mkSort (Sorts.sort_of_univ u'))
| Case (ci, u, pms, p, CaseInvert {indices}, c, br) ->
let u' = f u in
if u' == u then Constr.map aux t
else Constr.map aux (mkCase (ci,u',pms,p,CaseInvert {indices},c,br))
| Case (ci, u, pms, p, NoInvert, c, br) ->
if Univ.Instance.is_empty u then Constr.map aux t
else
let u' = f u in
if u' == u then Constr.map aux t
else
Constr.map aux (mkCase (ci, u', pms, p, NoInvert, c, br))
| Array (u,elems,def,ty) ->
let u' = f u in
let elems' = CArray.Smart.map aux elems in
let def' = aux def in
let ty' = aux ty in
if u == u' && elems == elems' && def == def' && ty == ty' then t
else mkArray (u',elems',def',ty')
| _ -> Constr.map aux t
in
aux c
let univ_instantiate_constr u c =
let open Univ in
assert (Int.equal (Instance.length u) (AUContext.size c.univ_abstracted_binder));
subst_instance_constr u c.univ_abstracted_value
let subst_instance_context s ctx =
if Univ.Instance.is_empty s then ctx
else Context.Rel.map (fun x -> subst_instance_constr s x) ctx
let universes_of_constr c =
let open Univ in
let rec aux s c =
match kind c with
| Const (_c, u) ->
LSet.fold LSet.add (Instance.levels u) s
| Ind ((_mind,_), u) | Construct (((_mind,_),_), u) ->
LSet.fold LSet.add (Instance.levels u) s
| Sort u when not (Sorts.is_small u) ->
let u = Sorts.univ_of_sort u in
LSet.fold LSet.add (Universe.levels u) s
| Array (u,_,_,_) ->
let s = LSet.fold LSet.add (Instance.levels u) s in
Constr.fold aux s c
| Case (_, u, _, _, _,_ ,_) ->
let s = LSet.fold LSet.add (Instance.levels u) s in
Constr.fold aux s c
| _ -> Constr.fold aux s c
in aux LSet.empty c