1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
open ExtLib
open Dose_common
include Util.Logging (struct
let label = "dose_algo.flatten"
end)
let print_list fmt pr sep l =
match l with
| [] -> ()
| x :: r ->
pr fmt x ;
List.iter (fun x -> Format.fprintf fmt "%s%a" sep pr x) r
module Package = struct
type t = int
let print univ fmt i = CudfAdd.pp_package fmt (CudfAdd.inttopkg univ i)
let compare (x : int) y = compare x y
end
module PSet = Set.Make (Package)
let print_set fmt pr sep l = print_list fmt pr sep (PSet.elements l)
let pset_of_lst l = List.fold_left (fun s x -> PSet.add x s) PSet.empty l
let pset_map f s = pset_of_lst (List.map f (PSet.elements s))
module PTbl = struct
type 'a t = 'a array
let create size v = Array.make size v
let init size f = Array.init size f
let get a i = a.(i)
let set a i v = a.(i) <- v
let iteri f a = Array.iteri (fun i v -> f i v) a
let map = Array.map
let mapi f a = Array.mapi (fun i v -> f i v) a
let foldi f a acc =
snd (Array.fold_right (fun v (i, acc) -> (i + 1, f i v acc)) a (0, acc))
let fold = Array.fold_right
end
module Disj = struct
type t = PSet.t
let print univ fmt l =
if PSet.is_empty l then Format.fprintf fmt "MISSING"
else print_set fmt (Package.print univ) " | " l
let implies = PSet.subset
let equiv = PSet.equal
let lit = PSet.singleton
let lit_disj l = List.fold_right PSet.add l PSet.empty
let _false = PSet.empty
let disj = PSet.union
let disjl l = List.fold_left disj _false l
let iter s f = PSet.iter f s
let cut d p d' =
assert (PSet.mem p d) ;
PSet.union (PSet.remove p d) d'
let fold = PSet.fold
let for_all = PSet.for_all
let exists = PSet.exists
let implies1 = PSet.mem
let to_lit l = if PSet.cardinal l = 1 then Some (PSet.choose l) else None
let to_lits l = l
let filter = PSet.filter
let normalize d = pset_map (fun i -> i) d
let compare = PSet.compare
end
module CSet = Set.Make (Disj)
module Formula = struct
type t = Disj.t list
let print univ fmt = print_list fmt (Disj.print univ) ", "
let of_disj d = [d]
let lit p = of_disj (Disj.lit p)
let lit_disj l = of_disj (Disj.lit_disj l)
let implies1 l1 y = List.exists (fun x -> Disj.implies x y) l1
let implies l1 l2 = List.for_all (fun y -> implies1 l1 y) l2
let equiv l1 l2 =
List.for_all (fun y -> List.exists (fun x -> Disj.equiv x y) l1) l2
&& List.for_all (fun y -> List.exists (fun x -> Disj.equiv x y) l2) l1
let _true = []
let conj1 l x =
if implies1 l x then l
else x :: List.filter (fun y -> not (Disj.implies x y)) l
let conj l1 l2 = List.fold_left conj1 l1 l2
let conjl l = List.fold_left conj _true l
let _false = of_disj Disj._false
let disj l1 l2 =
List.fold_left
(fun l x -> List.fold_left (fun l y -> conj1 l (Disj.disj x y)) l l2)
_true
l1
let disjl l = List.fold_left disj _false l
let iter l f = List.iter f l
let fold f l = List.fold_right f l
let filter = List.filter
let exists = List.exists
let map = List.map
let normalize f =
let f = List.map Disj.normalize f in
let f = List.sort ~cmp:PSet.compare f in
f
end
module Conflict = struct
type t = PSet.t PTbl.t
let create size = PTbl.create size PSet.empty
let has c p1 = not (PSet.is_empty (PTbl.get c p1))
let check c p1 p2 = PSet.mem p1 (PTbl.get c p2)
let add c p1 p2 =
PTbl.set c p1 (PSet.add p2 (PTbl.get c p1)) ;
PTbl.set c p2 (PSet.add p1 (PTbl.get c p2))
let remove c p1 p2 =
PTbl.set c p1 (PSet.remove p2 (PTbl.get c p1)) ;
PTbl.set c p2 (PSet.remove p1 (PTbl.get c p2))
let iter c f =
PTbl.iteri (fun i s -> PSet.iter (fun j -> if i < j then f i j) s) c
let iter_on_packages c f = PTbl.iteri f c
let of_package = PTbl.get
let exists c f p = PSet.exists f (PTbl.get c p)
let for_all c f p = PSet.for_all f (PTbl.get c p)
end
let simplify_formula confl f =
Formula.filter
(fun d ->
Disj.for_all
(fun p -> Conflict.exists confl (fun q -> not (Disj.implies1 q d)) p)
d)
f
let filter_conflicts confl _ f =
Formula.fold
(fun d nf ->
Formula.conj
nf
(Formula.of_disj
(Disj.filter
(fun q ->
not
(PSet.exists
(fun r -> Formula.implies1 f (Disj.lit r))
(Conflict.of_package confl q)))
d)))
f
Formula._true
let rec flatten_deps tbl deps conflicts visited l =
Formula.fold
(fun d (l, r) ->
let (l', r') =
Disj.fold
(fun i (l, r) ->
let (l', r') = flatten_dep tbl deps conflicts visited i in
(Formula.disj l' l, PSet.union r r'))
d
(Formula._false, r)
in
(Formula.conj l' l, r'))
l
(Formula._true, PSet.empty)
and flatten_dep tbl deps conflicts visited i =
try (Hashtbl.find tbl i, PSet.empty)
with Not_found ->
let res =
if List.mem i visited then (Formula._true, PSet.singleton i)
else
let (l, r) =
flatten_deps tbl deps conflicts (i :: visited) (PTbl.get deps i)
in
let l = simplify_formula conflicts l in
let r = PSet.remove i r in
if Conflict.has conflicts i then (Formula.conj (Formula.lit i) l, r)
else (l, r)
in
if PSet.is_empty (snd res) then Hashtbl.add tbl i (fst res) ;
res
let flatten_dependencies size deps confl =
let tbl = Hashtbl.create 17 in
PTbl.init size (fun p -> fst (flatten_dep tbl deps confl [] p))
let remove_self_conflicts deps confl =
let s = ref PSet.empty in
PTbl.iteri
(fun p f ->
if
Formula.exists
(fun d ->
match Disj.to_lit d with
| Some q -> Conflict.check confl p q
| None -> false)
f
then s := PSet.add p !s)
deps ;
PTbl.map
(fun f ->
Formula.fold
(fun d f ->
let d = Disj.filter (fun q -> not (PSet.mem q !s)) d in
Formula.conj (Formula.of_disj d) f)
f
Formula._true)
deps
let remove_redundant_conflicts deps confl =
let conj_deps p =
let f = PTbl.get deps p in
Formula.fold
(fun d s -> match Disj.to_lit d with Some p -> PSet.add p s | None -> s)
f
PSet.empty
in
Conflict.iter confl (fun p1 p2 ->
let d1 = conj_deps p1 in
let d2 = conj_deps p2 in
if
PSet.exists
(fun q1 ->
PSet.exists
(fun q2 ->
(p1 <> q1 || p2 <> q2)
&& (p1 <> q2 || p2 <> q1)
&& Conflict.check confl q1 q2)
d2)
d1
then Conflict.remove confl p1 p2) ;
let try_remove_conflict p1 p2 =
let f1 = PTbl.get deps p1 in
let d2 = conj_deps p2 in
if
Formula.exists
(fun d1 ->
Disj.for_all
(fun q1 ->
PSet.exists
(fun q2 ->
(p1 <> q1 || p2 <> q2)
&& (p1 <> q2 || p2 <> q1)
&& Conflict.check confl q1 q2)
d2)
d1)
f1
then Conflict.remove confl p1 p2
in
Conflict.iter confl try_remove_conflict ;
Conflict.iter confl (fun p1 p2 -> try_remove_conflict p2 p1) ;
PTbl.map (simplify_formula confl) deps
let maybe_remove deps confl _p _f d =
Disj.exists
(fun q ->
Conflict.for_all
confl
(fun r ->
Formula.exists
(fun d' -> Disj.implies d' d && not (Disj.implies1 q d'))
(PTbl.get deps r))
q)
d
let is_composition deps p f d =
Formula.exists
(fun d' ->
(not (Disj.equiv d d'))
&& (not (Disj.equiv (Disj.lit p) d'))
&& Formula.exists
(fun d'' -> Disj.implies d d'')
(Disj.fold
(fun p f -> Formula.disj (PTbl.get deps p) f)
d'
Formula._false))
f
let rec remove_deps deps confl =
let changed = ref false in
let deps =
PTbl.mapi
(fun p f ->
Formula.filter
(fun d ->
let b =
(not (maybe_remove deps confl p f d)) || is_composition deps p f d
in
if not b then changed := true ;
b)
f)
deps
in
if !changed then remove_deps deps confl else deps
let repository universe =
let cmp : int -> int -> bool = ( = ) in
let size = Cudf.universe_size universe in
let confl = Conflict.create size in
let deps = PTbl.create size Formula._true in
let c = CudfAdd.init_conflicts universe in
Cudf.iteri_packages
(fun i p1 ->
List.iter
(fun p2 ->
let j = CudfAdd.pkgtoint universe p2 in
Conflict.add confl i j)
(CudfAdd.who_conflicts c universe p1) ;
let dll =
List.map
(fun disjunction ->
let dl =
List.fold_left
(fun l2 vpkg ->
let l = CudfAdd.who_provides universe vpkg in
List.fold_left
(fun acc i -> CudfAdd.pkgtoint universe i :: acc)
l2
l)
[]
disjunction
in
Formula.lit_disj (List.unique ~cmp dl))
p1.Cudf.depends
in
PTbl.set deps i (Formula.conjl dll))
universe ;
(deps, confl)
let flatten_repository size (deps, confl) =
let flatten_deps = flatten_dependencies size deps confl in
let flatten_deps = remove_self_conflicts flatten_deps confl in
let flatten_deps = remove_redundant_conflicts flatten_deps confl in
let flatten_deps = flatten_dependencies size flatten_deps confl in
let flatten_deps = remove_deps flatten_deps confl in
(flatten_deps, confl)