Source file strongconflicts_int.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
(** Strong Conflicts *)
open ExtLib
open Dose_common
include Util.Logging (struct
let label = "dose_algo.strongconflicts_int"
end)
module SG = Defaultgraphs.IntPkgGraph.G
module PkgV = Defaultgraphs.IntPkgGraph.PkgV
type cfl_type = Explicit | Conjunctive | Other of Diagnostic.reason_int list
module CflE = struct
type t = int * int * cfl_type
let compare = Stdlib.compare
let default = (0, 0, Other [])
end
module IG = Graph.Imperative.Matrix.Graph
module CG = Graph.Imperative.Graph.ConcreteLabeled (PkgV) (CflE)
(** progress bar *)
let seedingbar = Util.Progress.create "Strongconflicts_int.seeding"
let localbar = Util.Progress.create "Strongconflicts_int.local"
(** timer *)
let sctimer = Util.Timer.create "Strongconflicts_int.main"
module S = Set.Make (struct
type t = int
let compare = Stdlib.compare
end)
let swap (p, q) = (min p q, max p q)
let to_set l = List.fold_right S.add l S.empty
let explicit univ =
let conflict_pairs = Hashtbl.create 1023 in
Cudf.iteri_packages
(fun i p ->
List.iter
(fun j ->
let pair = swap (i, j) in
if i <> j && not (Hashtbl.mem conflict_pairs pair) then
Hashtbl.add conflict_pairs pair ())
(CudfAdd.resolve_vpkgs_int univ p.Cudf.conflicts))
univ ;
conflict_pairs
let triangle reverse xpred ypred common =
if not (S.is_empty common) then
let xrest = S.diff xpred ypred in
let yrest = S.diff ypred xpred in
let pred_pred =
S.fold (fun z acc -> S.union (to_set reverse.(z)) acc) common S.empty
in
S.subset xrest pred_pred && S.subset yrest pred_pred
else false
let strongconflicts univ =
let solver = Depsolver_int.init_solver_univ ~global_constraints:[] univ in
let reverse = Depsolver_int.reverse_dependencies univ in
let size = Cudf.universe_size univ in
let cache = IG.make size in
Util.Timer.start sctimer ;
debug "Pre-seeding ..." ;
Util.Progress.set_total seedingbar size ;
let cg = SG.create ~size () in
for i = 0 to size - 1 do
Util.Progress.progress seedingbar ;
Defaultgraphs.IntPkgGraph.conjdepgraph_int cg univ i ;
IG.add_vertex cache i
done ;
debug
"dependency graph : nodes %d , edges %d"
(SG.nb_vertex cg)
(SG.nb_edges cg) ;
SG.iter_edges (IG.add_edge cache) cg ;
debug " done" ;
let i = ref 0 in
let total = ref 0 in
let ex = explicit univ in
let conflict_size = Hashtbl.length ex in
let try_add_edge stronglist p q x y =
if not (IG.mem_edge cache p q) then (
IG.add_edge cache p q ;
match Depsolver_int.solve solver ~explain:true [p; q] with
| Diagnostic.SuccessInt _ -> ()
| Diagnostic.FailureInt f ->
CG.add_edge_e stronglist (p, (x, y, Other (f ())), q))
in
let strongraph = CG.create () in
Util.Progress.set_total localbar conflict_size ;
Hashtbl.iter
(fun (x, y) _ ->
incr i ;
Util.Progress.progress localbar ;
if not (IG.mem_edge cache x y) then (
let donei = ref 0 in
let pkg_x = CudfAdd.inttopkg univ x in
let pkg_y = CudfAdd.inttopkg univ y in
let (a, b) =
( to_set (Depsolver_int.reverse_dependency_closure reverse [x]),
to_set (Depsolver_int.reverse_dependency_closure reverse [y]) )
in
IG.add_edge cache x y ;
CG.add_edge_e strongraph (x, (x, y, Explicit), y) ;
debug
"(%d of %d) %s # %s ; Strong conflicts %d Tuples %d"
!i
conflict_size
pkg_x.Cudf.package
pkg_y.Cudf.package
(CG.nb_edges strongraph)
(S.cardinal a * S.cardinal b) ;
List.iter
(fun p ->
List.iter
(fun q ->
if p <> q && not (IG.mem_edge cache p q) then (
IG.add_edge cache p q ;
CG.add_edge_e strongraph (p, (x, y, Conjunctive), q)))
(y :: SG.pred cg y))
(x :: SG.pred cg x) ;
let xpred = to_set reverse.(x) in
let ypred = to_set reverse.(y) in
let common = S.inter xpred ypred in
if
S.cardinal xpred = 1
&& S.cardinal ypred = 1
&& S.choose xpred = S.choose ypred
then (
let p = S.choose xpred in
debug
"triangle %s - %s (%s)"
(CudfAdd.string_of_package pkg_x)
(CudfAdd.string_of_package pkg_y)
(CudfAdd.string_of_package (CudfAdd.inttopkg univ p)) ;
try_add_edge strongraph p x x y ;
incr donei ;
try_add_edge strongraph p y x y ;
incr donei)
else if triangle reverse xpred ypred common then
debug
"debconf triangle %s - %s"
(CudfAdd.string_of_package pkg_x)
(CudfAdd.string_of_package pkg_y)
else
S.iter
(fun p ->
S.iter
(fun q ->
try_add_edge strongraph p q x y ;
incr donei ;
if !donei mod 10000 = 0 then debug "%d" !donei)
(S.diff b (to_set (IG.succ cache p))))
a ;
debug "\n | tuple examined %d" !donei ;
total := !total + !donei))
ex ;
Util.Progress.reset localbar ;
debug " total tuple examined %d" !total ;
ignore (Util.Timer.stop sctimer ()) ;
strongraph