1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
open! Base
module Bits = struct
include Bits
let hash_fold_t state t = Bits.to_string t |> String.hash_fold_t state
end
module Structure_kind = struct
type t =
| Empty
| Const of Bits.t
| Op of Signal.signal_op
| Mux
| Cat
| Not
| Wire of string list
| Select of int * int
| Mem_read_port
| Sequential of Signal.Uid.t
[@@deriving sexp_of, compare, hash]
let equal a b = compare a b = 0
end
let structure_kind (signal : Signal.t) =
match signal with
| Signal.Empty -> Structure_kind.Empty
| Signal.Const { constant; _ } -> Structure_kind.Const constant
| Signal.Op2 { op; _ } -> Structure_kind.Op op
| Signal.Mux _ -> Structure_kind.Mux
| Signal.Cat _ -> Structure_kind.Cat
| Signal.Not _ -> Structure_kind.Not
| Signal.Wire _ -> Structure_kind.Wire (Signal.names signal)
| Signal.Select { high; low; _ } -> Structure_kind.Select (high, low)
| Signal.Reg _ -> Structure_kind.Sequential (Signal.uid signal)
| Signal.Mem _ -> Structure_kind.Sequential (Signal.uid signal)
| Signal.Multiport_mem _ -> Structure_kind.Sequential (Signal.uid signal)
| Signal.Mem_read_port _ -> Structure_kind.Mem_read_port
| Signal.Inst _ -> Structure_kind.Sequential (Signal.uid signal)
;;
let children (signal : Signal.t) =
match structure_kind signal with
| Structure_kind.Sequential _ -> []
| _ ->
(match signal with
| Wire { driver; _ } -> [ !driver ]
| Mem_read_port { memory; read_address; _ } -> [ memory; read_address ]
| _ -> Signal.deps signal)
;;
let signal_id_map_children s ~f =
{ s with Signal.s_id = Signal.new_id (); s_deps = List.map s.Signal.s_deps ~f }
;;
let map_children signal ~f =
match signal with
| Signal.Empty -> signal
| Signal.Const _ -> signal
| Signal.Op2 { signal_id; op; arg_a; arg_b } ->
let arg_a = f arg_a in
let arg_b = f arg_b in
Signal.Op2
{ signal_id = { signal_id with s_id = Signal.new_id (); s_deps = [ arg_a; arg_b ] }
; op
; arg_a
; arg_b
}
| Signal.Mux { signal_id; select; cases } ->
let select = f select in
let cases = List.map cases ~f in
Signal.Mux
{ signal_id = { signal_id with s_id = Signal.new_id (); s_deps = select :: cases }
; select
; cases
}
| Signal.Cat { signal_id; args } ->
let args = List.map args ~f in
Signal.Cat
{ signal_id = { signal_id with s_id = Signal.new_id (); s_deps = args }; args }
| Signal.Not { signal_id; arg } ->
let arg = f arg in
Signal.Not
{ signal_id = { signal_id with s_id = Signal.new_id (); s_deps = [ arg ] }; arg }
| Signal.Wire { signal_id; driver } ->
Signal.Wire
{ signal_id = signal_id_map_children signal_id ~f; driver = ref (f !driver) }
| Signal.Select { signal_id; arg; high; low } ->
let arg = f arg in
Signal.Select
{ signal_id = { signal_id with s_id = Signal.new_id (); s_deps = [ arg ] }
; arg
; high
; low
}
| Signal.Multiport_mem _ | Signal.Reg _ -> assert false
| Signal.Mem_read_port { signal_id; memory; read_address } ->
Signal.Mem_read_port
{ signal_id =
{ signal_id with
s_id = Signal.new_id ()
; s_deps = List.map signal_id.Signal.s_deps ~f
}
; memory = f memory
; read_address = f read_address
}
| Signal.Mem _ -> failwith "Mem is unsupported"
| Signal.Inst _ -> signal
;;
let find_by_signal_uid memo s = Hashtbl.find_exn memo (Signal.uid s)
let signal_hash memo signal =
Hashtbl.find_or_add memo (Signal.uid signal) ~default:(fun () ->
let children_hashes = List.map (children signal) ~f:(find_by_signal_uid memo) in
[%hash: Structure_kind.t * int list] (structure_kind signal, children_hashes))
;;
let make_canonical_signal canonical sequential_wires signal =
match structure_kind signal with
| Structure_kind.Sequential _ ->
let wire = Signal.wire (Signal.width signal) in
Hashtbl.add_exn sequential_wires ~key:(Signal.uid signal) ~data:(signal, wire);
wire
| Structure_kind.Mem_read_port ->
let transformed =
map_children signal ~f:(fun child -> Hashtbl.find_exn canonical (Signal.uid child))
in
Signal.wireof transformed
| _ ->
map_children signal ~f:(fun child -> Hashtbl.find_exn canonical (Signal.uid child))
;;
let rec shallow_equal a b =
Structure_kind.equal (structure_kind a) (structure_kind b)
&&
match a, b with
| Wire { driver = r_a; _ }, Wire { driver = r_b; _ } ->
shallow_equal !r_a !r_b
| _ ->
[%equal: Signal.Uid.t list]
(children a |> List.map ~f:Signal.uid)
(children b |> List.map ~f:Signal.uid)
;;
let transform_sequential_signal canonical signal =
let get_canonical signal = Hashtbl.find_exn canonical (Signal.uid signal) in
match signal with
| Signal.Reg
{ signal_id
; register =
{ Signal.reg_clock
; reg_clock_edge
; reg_reset
; reg_reset_edge
; reg_reset_value
; reg_clear
; reg_clear_level
; reg_clear_value
; reg_enable
}
; d
} ->
let d = get_canonical d in
let register =
{ Signal.reg_clock = get_canonical reg_clock
; reg_clock_edge
; reg_reset = get_canonical reg_reset
; reg_reset_edge
; reg_reset_value = get_canonical reg_reset_value
; reg_clear = get_canonical reg_clear
; reg_clear_level
; reg_clear_value = get_canonical reg_clear_value
; reg_enable = get_canonical reg_enable
}
in
Signal.Reg
{ signal_id =
{ signal_id with
s_id = Signal.new_id ()
; s_deps =
[ d
; register.reg_clock
; register.reg_reset
; register.reg_reset_value
; register.reg_clear
; register.reg_clear_value
; register.reg_enable
]
}
; register
; d
}
| Signal.Multiport_mem { signal_id; size; write_ports } ->
let write_ports =
Array.map
write_ports
~f:(fun { Signal.write_clock : Signal.t
; write_address : Signal.t
; write_enable : Signal.t
; write_data : Signal.t
}
->
{ Signal.write_clock = get_canonical write_clock
; write_address = get_canonical write_address
; write_enable = get_canonical write_enable
; write_data = get_canonical write_data
})
in
Signal.Multiport_mem
{ signal_id =
{ signal_id with s_deps = List.map signal_id.Signal.s_deps ~f:get_canonical }
; size
; write_ports
}
| _ ->
let sexp_of_finite_signal signal =
Signal.sexp_of_signal_recursive ~depth:5 (signal : Signal.t)
in
raise_s
[%message
"Unexpected signal type. Only sequential signals are expected here"
(signal : finite_signal)]
;;
let rec unwrap_wire s =
match s with
| Signal.Wire { driver; _ } when List.is_empty (Signal.names s) -> unwrap_wire !driver
| _ -> s
;;
let fix_mem_read_ports signals =
List.iter signals ~f:(function
| Signal.Wire { driver; _ } ->
(match !driver with
| Signal.Mem_read_port
{ signal_id; memory = Wire { driver = mem_ref; _ }; read_address } ->
let memory =
match unwrap_wire !mem_ref with
| Signal.Multiport_mem _ as unwrapped -> unwrapped
| _ -> assert false
in
driver
:= Mem_read_port
{ signal_id = { signal_id with s_deps = [ memory; read_address ] }
; memory
; read_address
}
| _ -> ())
| _ -> ())
;;
let compress_wires signals =
Signal_graph.create signals
|> Signal_graph.iter ~f:(function
| Signal.Wire { driver; _ } -> driver := unwrap_wire !driver
| _ -> ())
;;
let canonicalize signals =
let hash_memo = Hashtbl.create (module Signal.Uid) in
let canonical = Hashtbl.create (module Signal.Uid) in
let canonical_by_hash = Hashtbl.create (module Int) in
let sequential_wires = Hashtbl.create (module Signal.Uid) in
List.iter
(Signal_graph.topological_sort ~deps:children (Signal_graph.create signals))
~f:(fun signal ->
let my_hash = signal_hash hash_memo signal in
let signal_with_canonical_children =
make_canonical_signal canonical sequential_wires signal
in
let canonical_signal =
let cannonical_signals_with_matching_hash =
Hashtbl.find_multi canonical_by_hash my_hash
in
match
List.find
cannonical_signals_with_matching_hash
~f:(shallow_equal signal_with_canonical_children)
with
| None ->
Hashtbl.add_multi
canonical_by_hash
~key:my_hash
~data:signal_with_canonical_children;
signal_with_canonical_children
| Some canonical_signal -> canonical_signal
in
Hashtbl.add_exn canonical ~key:(Signal.uid signal) ~data:canonical_signal);
Hashtbl.iter sequential_wires ~f:(fun (signal, wire) ->
Signal.( <== ) wire (transform_sequential_signal canonical signal));
fix_mem_read_ports (Hashtbl.data canonical);
compress_wires (Hashtbl.data canonical);
canonical
;;
let deduplicate circuit =
let all_original_signals =
Circuit.signal_graph circuit |> Signal_graph.filter ~f:(Fn.const true)
in
let canonical = canonicalize all_original_signals in
let outputs = Circuit.outputs circuit in
Circuit.create_exn
~name:(Circuit.name circuit)
(List.map outputs ~f:(fun signal -> Hashtbl.find_exn canonical (Signal.uid signal)))
;;