1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
open! Import
include Fixed_intf
module Make (B : Comb.S) = struct
open B
type unsigned
type signed
type 'a round = int -> B.t -> B.t
type 'a overflow = int -> int -> B.t -> B.t
module type Round = Round with module B := B
module type Overflow = Overflow with module B := B
module type Fixed = Fixed_point with module B := B
let get_int fp s = select s (width s - 1) fp
let get_frac fp s = if fp = 0 then empty else select s (fp - 1) 0
let floor = get_int
let ceil fp s =
let ib = width s - fp in
let max_frac = concat_msb_e [ zero ib; ones fp ] in
get_int fp (s +: max_frac)
;;
let half fp s =
let ib = width s - fp in
zero ib @: reverse (one fp)
;;
module Unsigned = struct
module Round = struct
type t = unsigned round
let neg_infinity fp s = floor fp (ue s)
let pos_infinity fp s = ceil fp (ue s)
let to_zero fp s = floor fp (ue s)
let away_from_zero fp s = ceil fp (ue s)
let tie_to_neg_infinity fp s =
let half = half fp (ue s) in
ceil fp (ue s -: half)
;;
let tie_to_pos_infinity fp s =
let half = half fp (ue s) in
floor fp (ue s +: half)
;;
let tie_to_zero fp s =
let half = half fp (ue s) in
ceil fp (ue s -: half)
;;
let tie_away_from_zero fp s =
let half = half fp (ue s) in
floor fp (ue s +: half)
;;
let tie_to_nearest_even fp s =
let half = half fp (ue s) in
let lsb = lsb (get_int fp s) in
mux2 lsb (floor fp (ue s +: half)) (ceil fp (ue s -: half))
;;
let tie_to_nearest_odd fp s =
let half = half fp (ue s) in
let lsb = lsb (get_int fp s) in
mux2 lsb (ceil fp (ue s -: half)) (floor fp (ue s +: half))
;;
let generic sel fp s =
let s = ue s in
let z = zero (width s) in
let half = half fp s in
let lsb = lsb (get_int fp s) in
let rnd = mux sel [ z; z; z; z; half ] in
let ceil = ceil fp (s -: rnd) in
let floor = floor fp (s +: rnd) in
let sel =
mux
sel
[ vdd
; gnd
; vdd
; gnd
; gnd
; vdd
; gnd
; vdd
; lsb
; ~:lsb
]
in
mux2 sel floor ceil
;;
let eval f = f
end
module Overflow = struct
type t = unsigned overflow
let wrap fp ib s = concat_msb_e [ select (get_int fp s) (ib - 1) 0; get_frac fp s ]
let saturate fp ib s =
let i = get_int fp s in
let f = get_frac fp s in
if width i = ib
then s
else if width i < ib
then
concat_msb_e [ zero (ib - width i); i; f ]
else (
let dropped = select i (width i - 1) ib in
let remaining = select i (ib - 1) 0 in
let overflow = reduce ~f:( |: ) (bits_msb dropped) in
let clipped = mux2 overflow (ones (ib + fp)) (concat_msb_e [ remaining; f ]) in
clipped)
;;
let eval f = f
end
module type Spec = sig
val round : unsigned round
val overflow : unsigned overflow
end
module Make (S : Spec) = struct
type t =
{ s : B.t
; fp : int
}
let mk fp s =
if B.width s <= fp
then
failwith "Fixed.Signal.mk: there must be at least 1 integer bit";
{ s; fp }
;;
let int s = B.select s.s (B.width s.s - 1) s.fp
let frac s =
if s.fp < 0
then failwith "Fixed.Unsigned.frac fp < 0"
else if s.fp = 0
then B.empty
else B.select s.s (s.fp - 1) 0
;;
let signal s = s.s
let width_int s = B.width (int s)
let width_frac s = B.width (frac s)
let to_float s =
let fp = 2. ** Float.of_int s.fp in
let i = Float.of_int (B.to_int s.s) in
i /. fp
;;
let extend s n =
if n < 0
then failwith "Fixed.Unsigned.extend"
else if n = 0
then s
else { s = B.concat_msb [ B.zero n; s.s ]; fp = s.fp }
;;
let select_int s i =
if i <= 0
then failwith "Fixed.Unsigned.select_int i<=0"
else (
let si = int s in
let wi = width_int s in
if i <= wi then B.select si (i - 1) 0 else B.concat_msb [ B.zero (i - wi); si ])
;;
let select_frac s f =
if f < 0
then failwith "Fixed.Unsigned.select_frac f<0"
else if f = 0
then B.empty
else (
let wf = width_frac s in
if wf = 0
then B.zero f
else (
let sf = frac s in
if f <= wf
then B.select sf (wf - 1) (wf - f)
else B.concat_msb [ sf; B.zero (f - wf) ]))
;;
let select s i f =
let i' = select_int s i in
let f' = select_frac s f in
mk f (B.concat_msb_e [ i'; f' ])
;;
let norm l =
let i = List.fold l ~init:0 ~f:(fun a b -> max a (B.width (int b))) in
let f = List.fold l ~init:0 ~f:(fun a b -> max a (B.width (frac b))) in
List.map l ~f:(fun s -> select s i f)
;;
let norm2 a b =
let l = norm [ a; b ] in
match l with
| [ a; b ] -> a, b
| _ -> failwith "Fixed.Unsigned.norm2"
;;
let const ip fp f =
let fp' = Float.of_int fp in
let fp' = 2.0 ** fp' in
mk fp (B.of_int ~width:(ip + fp) (Int.of_float (f *. fp')))
;;
let ( +: ) a b =
let a, b = norm2 a b in
let a, b = extend a 1, extend b 1 in
{ s = B.( +: ) a.s b.s; fp = a.fp }
;;
let ( -: ) a b =
let a, b = norm2 a b in
let a, b = extend a 1, extend b 1 in
{ s = B.( -: ) a.s b.s; fp = a.fp }
;;
let ( *: ) a b = { s = B.( *: ) a.s b.s; fp = a.fp + b.fp }
let ( ==: ) a b =
let a, b = norm2 a b in
B.( ==: ) a.s b.s
;;
let ( <>: ) a b =
let a, b = norm2 a b in
B.( <>: ) a.s b.s
;;
let ( <: ) a b =
let a, b = norm2 a b in
B.( <: ) a.s b.s
;;
let ( <=: ) a b =
let a, b = norm2 a b in
B.( <=: ) a.s b.s
;;
let ( >: ) a b =
let a, b = norm2 a b in
B.( >: ) a.s b.s
;;
let ( >=: ) a b =
let a, b = norm2 a b in
B.( >=: ) a.s b.s
;;
let mux sel l =
let l = norm l in
let fp = width_frac (List.hd_exn l) in
let q = B.mux sel (List.map l ~f:signal) in
mk fp q
;;
let resize s i f =
let i' = width_int s in
let f' = width_frac s in
let s = if f >= f' then select s i' f else mk f (S.round (f' - f) s.s) in
mk f (S.overflow f i s.s)
;;
end
end
module Signed = struct
module Round = struct
type t = signed round
let neg_infinity fp s = floor fp (se s)
let pos_infinity fp s = ceil fp (se s)
let to_zero fp s =
let sign = msb s in
mux2 sign (ceil fp (se s)) (floor fp (se s))
;;
let away_from_zero fp s =
let sign = msb s in
mux2 sign (floor fp (se s)) (ceil fp (se s))
;;
let tie_to_neg_infinity fp s =
let half = half fp (se s) in
ceil fp (se s -: half)
;;
let tie_to_pos_infinity fp s =
let half = half fp (se s) in
floor fp (se s +: half)
;;
let tie_to_zero fp s =
let half = half fp (se s) in
let sign = msb s in
mux2 sign (floor fp (se s +: half)) (ceil fp (se s -: half))
;;
let tie_away_from_zero fp s =
let half = half fp (se s) in
let sign = msb s in
mux2 sign (ceil fp (se s -: half)) (floor fp (se s +: half))
;;
let tie_to_nearest_even fp s =
let half = half fp (se s) in
let lsb = lsb (get_int fp s) in
mux2 lsb (floor fp (se s +: half)) (ceil fp (se s -: half))
;;
let tie_to_nearest_odd fp s =
let half = half fp (se s) in
let lsb = lsb (get_int fp s) in
mux2 lsb (ceil fp (se s -: half)) (floor fp (se s +: half))
;;
let generic sel fp s =
let s = se s in
let z = zero (width s) in
let half = half fp s in
let lsb = lsb (get_int fp s) in
let sign = msb s in
let rnd = mux sel [ z; z; z; z; half ] in
let ceil = ceil fp (s -: rnd) in
let floor = floor fp (s +: rnd) in
let sel =
mux
sel
[ vdd
; gnd
; ~:sign
; sign
; gnd
; vdd
; sign
; ~:sign
; lsb
; ~:lsb
]
in
mux2 sel floor ceil
;;
let eval f = f
end
module Overflow = struct
type t = signed overflow
let wrap fp ib s = concat_msb_e [ select (get_int fp s) (ib - 1) 0; get_frac fp s ]
let saturate fp ib s =
let i = get_int fp s in
let f = get_frac fp s in
if width i = ib
then s
else if width i < ib
then
concat_msb_e [ repeat (msb i) (ib - width i); i; f ]
else (
let dropped = select i (width i - 1) ib in
let remaining = select i (ib - 1) 0 in
let overflow_n = repeat (msb remaining) (width dropped) ==: dropped in
let min = reverse (one (ib + fp)) in
let max = ~:min in
let clipped =
mux2 overflow_n (concat_msb_e [ remaining; f ]) (mux2 (msb dropped) min max)
in
clipped)
;;
let eval f = f
end
module type Spec = sig
val round : signed round
val overflow : signed overflow
end
module Make (S : Spec) = struct
type t =
{ s : B.t
; fp : int
}
let mk fp s =
if B.width s <= fp
then
failwith "Fixed.Signal.mk: there must be at least 1 integer bit";
{ s; fp }
;;
let int s = B.select s.s (B.width s.s - 1) s.fp
let frac s =
if s.fp < 0
then failwith "Fixed.Signed.frac fp < 0"
else if s.fp = 0
then B.empty
else B.select s.s (s.fp - 1) 0
;;
let signal s = s.s
let width_int s = B.width (int s)
let width_frac s = B.width (frac s)
let to_float s =
let fp = 2. ** Float.of_int s.fp in
let s = B.sresize s.s Nativeint.num_bits in
let i = Float.of_int (B.to_int s) in
i /. fp
;;
let extend s n =
if n < 0
then failwith "Fixed.Signed.extend"
else if n = 0
then s
else { s = B.concat_msb [ B.repeat (B.msb s.s) n; s.s ]; fp = s.fp }
;;
let select_int s i =
if i <= 0
then failwith "Fixed.Signed.select_int i<=0"
else (
let si = int s in
let wi = width_int s in
if i <= wi
then B.select si (i - 1) 0
else B.concat_msb [ B.repeat (B.msb si) (i - wi); si ])
;;
let select_frac s f =
if f < 0
then failwith "Fixed.Signed.select_frac f<0"
else if f = 0
then B.empty
else (
let wf = width_frac s in
if wf = 0
then B.zero f
else (
let sf = frac s in
if f <= wf
then B.select sf (wf - 1) (wf - f)
else B.concat_msb [ sf; B.zero (f - wf) ]))
;;
let select s i f =
let i' = select_int s i in
let f' = select_frac s f in
mk f (B.concat_msb_e [ i'; f' ])
;;
let norm l =
let i = List.fold l ~init:0 ~f:(fun a b -> max a (B.width (int b))) in
let f = List.fold l ~init:0 ~f:(fun a b -> max a (B.width (frac b))) in
List.map l ~f:(fun s -> select s i f)
;;
let norm2 a b =
let l = norm [ a; b ] in
match l with
| [ a; b ] -> a, b
| _ -> failwith "Fixed.Signed.norm2"
;;
let const ip fp f =
let fp' = Float.of_int fp in
let fp' = 2.0 ** fp' in
mk fp (B.of_int ~width:(ip + fp) (Int.of_float (f *. fp')))
;;
let ( +: ) a b =
let a, b = norm2 a b in
let a, b = extend a 1, extend b 1 in
{ s = B.( +: ) a.s b.s; fp = a.fp }
;;
let ( -: ) a b =
let a, b = norm2 a b in
let a, b = extend a 1, extend b 1 in
{ s = B.( -: ) a.s b.s; fp = a.fp }
;;
let ( *: ) a b = { s = B.( *+ ) a.s b.s; fp = a.fp + b.fp }
let ( ==: ) a b =
let a, b = norm2 a b in
B.( ==: ) a.s b.s
;;
let ( <>: ) a b =
let a, b = norm2 a b in
B.( <>: ) a.s b.s
;;
let ( <: ) a b =
let a, b = norm2 a b in
B.( <+ ) a.s b.s
;;
let ( <=: ) a b =
let a, b = norm2 a b in
B.( <=+ ) a.s b.s
;;
let ( >: ) a b =
let a, b = norm2 a b in
B.( >+ ) a.s b.s
;;
let ( >=: ) a b =
let a, b = norm2 a b in
B.( >=+ ) a.s b.s
;;
let mux sel l =
let l = norm l in
let fp = width_frac (List.hd_exn l) in
let q = B.mux sel (List.map l ~f:signal) in
mk fp q
;;
let resize s i f =
let i' = width_int s in
let f' = width_frac s in
let s = if f >= f' then select s i' f else mk f (S.round (f' - f) s.s) in
mk f (S.overflow f i s.s)
;;
end
end
end