Source file polynomial_commitment.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
open Bls
open Utils
module type Commitment_sig = sig
type t [@@deriving repr]
type prover_aux [@@deriving repr]
type prover_public_parameters
type secret = Poly.t SMap.t
val commit_single : prover_public_parameters -> Poly.t -> G1.t
val commit :
?all_keys:string list ->
prover_public_parameters ->
secret ->
t * prover_aux
val cardinal : t -> int
val rename : (string -> string) -> t -> t
val recombine : t list -> t
val recombine_prover_aux : prover_aux list -> prover_aux
val empty : t
val empty_prover_aux : prover_aux
val of_list :
prover_public_parameters -> name:string -> G1.t list -> t * prover_aux
val to_map : t -> G1.t SMap.t
end
module type Public_parameters_sig = sig
type prover [@@deriving repr]
type verifier [@@deriving repr]
type setup_params = int
val setup : setup_params -> Srs.t * Srs.t -> prover * verifier
val to_bytes : int -> prover -> Bytes.t
end
module type S = sig
type secret = Poly.t SMap.t
type query = Scalar.t SMap.t [@@deriving repr]
type answer = Scalar.t SMap.t SMap.t [@@deriving repr]
type proof [@@deriving repr]
type transcript = Bytes.t
module Commitment : Commitment_sig
module Public_parameters :
Public_parameters_sig with type prover = Commitment.prover_public_parameters
val evaluate : secret -> query -> answer
val prove :
Public_parameters.prover ->
transcript ->
secret list ->
Commitment.prover_aux list ->
query list ->
answer list ->
proof * transcript
val verify :
Public_parameters.verifier ->
transcript ->
Commitment.t list ->
query list ->
answer list ->
proof ->
bool * transcript
end
module Kzg_impl = struct
module Public_parameters = struct
type prover = {srs1 : Srs_g1.t; encoding_1 : G2.t; encoding_x : G2.t}
[@@deriving repr]
let to_bytes len srs =
let open Utils.Hash in
let st = init () in
update st (G2.to_bytes srs.encoding_1) ;
update st (G2.to_bytes srs.encoding_x) ;
let srs1 = Srs_g1.to_array ~len srs.srs1 in
Array.iter (fun key -> update st (G1.to_bytes key)) srs1 ;
finish st
type verifier = {encoding_1 : G2.t; encoding_x : G2.t} [@@deriving repr]
type setup_params = int
let setup_verifier srs_g2 =
let encoding_1 = Srs_g2.get srs_g2 0 in
let encoding_x = Srs_g2.get srs_g2 1 in
{encoding_1; encoding_x}
let setup_prover (srs_g1, srs_g2) =
let {encoding_1; encoding_x} = setup_verifier srs_g2 in
{srs1 = srs_g1; encoding_1; encoding_x}
let setup _ (srs, _) =
let prv = setup_prover srs in
let vrf = setup_verifier (snd srs) in
(prv, vrf)
end
module Commitment = struct
type prover_public_parameters = Public_parameters.prover
type secret = Poly.t SMap.t
type t = G1.t SMap.t [@@deriving repr]
type prover_aux = unit [@@deriving repr]
let commit_single srs = commit1 Public_parameters.(srs.srs1)
let commit ?all_keys:_ srs f_map =
let cmt = SMap.map (commit_single srs) f_map in
let prover_aux = () in
(cmt, prover_aux)
let cardinal cmt = SMap.cardinal cmt
let rename f cmt =
SMap.fold (fun key x acc -> SMap.add (f key) x acc) cmt SMap.empty
let recombine cmt_list =
List.fold_left
(SMap.union (fun _k x _ -> Some x))
(List.hd cmt_list)
(List.tl cmt_list)
let recombine_prover_aux _ = ()
let empty = SMap.empty
let empty_prover_aux = ()
let of_list _ ~name l =
let n = List.length l in
( SMap.(
of_list
(List.mapi (fun i c -> (Aggregation.add_prefix ~n ~i "" name, c)) l)),
() )
let to_map cm = cm
end
type secret = Commitment.secret
type query = Scalar.t SMap.t [@@deriving repr]
type answer = Scalar.t SMap.t SMap.t [@@deriving repr]
type transcript = Bytes.t
type proof = G1.t SMap.t [@@deriving repr]
let compute_Ws srs batched_polys batched_answer query =
SMap.mapi
(fun x z ->
let f = SMap.find x batched_polys in
let s = SMap.find x batched_answer in
Poly.sub_inplace f f @@ Poly.constant s ;
let h = fst @@ Poly.division_xn f 1 (Scalar.negate z) in
Commitment.commit_single srs h)
query
let verifier_check srs cmt_map coeffs query s_map w_map =
let r_map = SMap.map (fun _ -> Scalar.random ()) w_map in
let cmts = SMap.values cmt_map in
let exponents =
SMap.fold
(fun x r exponents ->
let x_coeffs = SMap.find x coeffs in
SMap.mapi
(fun name exp ->
match SMap.find_opt name x_coeffs with
| None -> exp
| Some c -> Scalar.(exp + (r * c)))
exponents)
r_map
(SMap.map (fun _ -> Scalar.zero) cmt_map)
|> SMap.values
in
let s =
SMap.fold
(fun x r s -> Scalar.(sub s (r * SMap.find x s_map)))
r_map
Scalar.zero
in
let w_left_exps =
List.map (fun (x, r) -> Scalar.mul r @@ SMap.find x query)
@@ SMap.bindings r_map
in
let w_right_exps =
SMap.values r_map |> List.map Scalar.negate
in
let ws = SMap.values w_map in
let left =
pippenger1_with_affine_array
(Array.of_list @@ (G1.one :: ws) @ cmts)
(Array.of_list @@ (s :: w_left_exps) @ exponents)
in
let right =
pippenger1_with_affine_array
(Array.of_list ws)
(Array.of_list w_right_exps)
in
Public_parameters.[(left, srs.encoding_1); (right, srs.encoding_x)]
|> Pairing.pairing_check
let sample_ys transcript query =
let n = SMap.cardinal query in
let ys, transcript = Fr_generation.random_fr_list transcript n in
let y_map =
SMap.of_list (List.map2 (fun y name -> (name, y)) ys @@ SMap.keys query)
in
(y_map, transcript)
let batch_answer y_map answer =
let couples =
SMap.mapi
(fun x s_map ->
let y = SMap.find x y_map in
let s, coeffs, _yk =
SMap.fold
(fun name s (acc_s, coeffs, yk) ->
let acc_s = Scalar.(add acc_s @@ mul yk s) in
let coeffs = SMap.add name yk coeffs in
let yk = Scalar.mul yk y in
(acc_s, coeffs, yk))
s_map
(Scalar.zero, SMap.empty, Scalar.one)
in
(s, coeffs))
answer
in
(SMap.map fst couples, SMap.map snd couples)
let batch_polys coeffs f_map =
let polys = SMap.bindings f_map in
SMap.map
(fun f_coeffs ->
let coeffs, polys =
List.filter_map
(fun (name, p) ->
Option.map (fun c -> (c, p)) @@ SMap.find_opt name f_coeffs)
polys
|> List.split
in
Poly.linear polys coeffs)
coeffs
let prove_single srs transcript f_map query answer =
let y_map, transcript = sample_ys transcript query in
let batched_answer, coeffs = batch_answer y_map answer in
let batched_polys = batch_polys coeffs f_map in
let proof = compute_Ws srs batched_polys batched_answer query in
(proof, Transcript.expand proof_t proof transcript)
let verify_single srs transcript cmt_map query answer proof =
let y_map, transcript = sample_ys transcript query in
let batched_answer, coeffs = batch_answer y_map answer in
let b = verifier_check srs cmt_map coeffs query batched_answer proof in
(b, Transcript.expand proof_t proof transcript)
let group_secrets : secret list -> secret = SMap.union_disjoint_list
let group_cmts : Commitment.t list -> Commitment.t = SMap.union_disjoint_list
let group_queries : query list -> query =
fun query_list ->
let union =
SMap.union (fun _ z z' ->
if Scalar.eq z z' then Some z
else
failwith "group_query: equal query names must map to equal values")
in
List.fold_left union (List.hd query_list) (List.tl query_list)
let group_answers : answer list -> answer =
fun answer_list ->
List.fold_left
(SMap.union (fun _ m1 m2 -> Some (SMap.union_disjoint m1 m2)))
(List.hd answer_list)
(List.tl answer_list)
let evaluate : Poly.t SMap.t -> query -> answer =
fun f_map query ->
SMap.map (fun z -> SMap.map (fun f -> Poly.evaluate f z) f_map) query
let prove srs transcript f_map_list _prover_aux_list query_list answer_list =
let transcript = Transcript.list_expand query_t query_list transcript in
let transcript = Transcript.list_expand answer_t answer_list transcript in
let f_map = group_secrets f_map_list in
let query = group_queries query_list in
let answer = group_answers answer_list in
prove_single srs transcript f_map query answer
let verify srs transcript cmt_map_list query_list answer_list proof =
let transcript = Transcript.list_expand query_t query_list transcript in
let transcript = Transcript.list_expand answer_t answer_list transcript in
let cmt_map = group_cmts cmt_map_list in
let query = group_queries query_list in
let answer = group_answers answer_list in
verify_single srs transcript cmt_map query answer proof
end
include (Kzg_impl : S)