1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
open Bls12_381
module G1 = G1
module G2 = G2
module G1_carray = Octez_bls12_381_polynomial.G1_carray
module G2_carray = Octez_bls12_381_polynomial.G2_carray
module Checks = struct
let equality (g1_elements : G1_carray.t) (g2_elements : G2_carray.t) =
let g1 = G1_carray.get g1_elements 0 in
let g2 = G2_carray.get g2_elements 0 in
G1_carray.iteri_copy_elt
(fun i g1i ->
let g2i = G2_carray.get g2_elements i in
let gt_element1 = Pairing.pairing g1i g2 in
let gt_element2 = Pairing.pairing g1 g2i in
assert (GT.eq gt_element1 gt_element2))
g1_elements
let incrementation_g1 g1_elements g2_elements =
let g2 = G2_carray.get g2_elements 0 in
let g2x = G2_carray.get g2_elements 1 in
for i = 0 to G1_carray.length g1_elements - 2 do
let g1i = G1_carray.get g1_elements i in
let g1iplus = G1_carray.get g1_elements (i + 1) in
let gt_element1 = Pairing.pairing g1i g2x in
let gt_element2 = Pairing.pairing g1iplus g2 in
assert (GT.eq gt_element1 gt_element2)
done
let incrementation_g2 g1_elements g2_elements =
let g1 = G1_carray.get g1_elements 0 in
let g1x = G1_carray.get g1_elements 1 in
for i = 0 to G2_carray.length g2_elements - 2 do
let g2i = G2_carray.get g2_elements i in
let g2iplus = G2_carray.get g2_elements (i + 1) in
let gt_element1 = Pairing.pairing g1x g2i in
let gt_element2 = Pairing.pairing g1 g2iplus in
assert (GT.eq gt_element1 gt_element2)
done
let pairings g1_elements g2_elements =
equality g1_elements g2_elements ;
incrementation_g1 g1_elements g2_elements ;
incrementation_g2 g1_elements g2_elements
end
let exact_log2 p =
if p <= 0 then raise @@ Invalid_argument (string_of_int p) ;
let rec aux res p =
if p = 1 then res
else
let p' = p lsr 1 in
if p' = 1 then
if p mod 2 <> 0 then raise @@ Invalid_argument "not a power of 2"
else res + 1
else aux (res + 1) p'
in
aux 0 p
(** The binary format of our Srs is a sequence of G1 or G2 elements. *)
module Srs = struct
let to_file gs file to_compressed_bytes iter =
let oc = open_out_bin file in
try
iter (fun g1 -> output_bytes oc (to_compressed_bytes g1)) gs ;
close_out oc
with e ->
close_out oc ;
raise e
let gs1_to_file gs output_file =
to_file gs output_file G1.to_compressed_bytes G1_carray.iter_copy_elt
let gs2_to_file gs output_file =
to_file gs output_file G2.to_compressed_bytes G2_carray.iter_copy_elt
end
(** This module handles the file format of the result of powers-of-tau ceremony.
The layout of the file can be found at the bottom of this file
https://github.com/ebfull/powersoftau/blob/master/src/bin/verify.rs
to be
let tau_powers_length = 1 lsl power in
G1.size_in_bytes (* alpha in g1 *)
+ G1.size_in_bytes (* beta in g1 *)
+ G2.size_in_bytes (* beta in g2 *)
+ (tau_powers_length * G1.size_in_bytes) (* g1_coeffs *)
+ (tau_powers_length * G2.size_in_bytes) (* g2_coeffs *)
+ (tau_powers_length * G1.size_in_bytes) (* g1_alpha_coeffs *)
+ (tau_powers_length * G1.size_in_bytes) (* g1_beta_coeffs *)
+ ((tau_powers_length - 1) * G1.size_in_bytes) (* h *)
*)
module Powers_of_tau = struct
let generate_domain power =
let size = 1 lsl power in
let rec get_omega limit =
if limit < 32 then Fr.square (get_omega (limit + 1))
else
Fr.of_string
"0x16a2a19edfe81f20d09b681922c813b4b63683508c2280b93829971f439f0d2b"
in
let omega = get_omega power in
let rec encoded_pow_x acc xi i =
if i = 0 then List.rev acc
else encoded_pow_x (xi :: acc) (Fr.mul xi omega) (i - 1)
in
Array.of_list @@ encoded_pow_x [] Fr.one size
let power_of_radixfile radixfile =
let ic = open_in_bin radixfile in
try
let g1 = G1.size_in_bytes in
let g2 = G2.size_in_bytes in
let filesize = in_channel_length ic in
close_in ic ;
let nb_elements = (filesize - g1 - g2) / ((4 * g1) + g2) in
exact_log2 nb_elements
with e ->
close_in ic ;
raise e
let to_gs radixfile skip size_in_bytes of_bytes_exn evaluation_ecfft of_array
=
let power = power_of_radixfile radixfile in
let buf = Bytes.create size_in_bytes in
let read ic =
Stdlib.really_input ic buf 0 size_in_bytes ;
of_bytes_exn buf
in
let ic = open_in_bin radixfile in
try
Stdlib.seek_in ic skip ;
let size = 1 lsl power in
let points = Array.init size (fun _i -> read ic) |> of_array in
close_in ic ;
let domain = Octez_bls12_381_polynomial.Domain.build_power_of_two power in
let points = evaluation_ecfft ~domain ~points in
points
with e ->
close_in ic ;
raise e
let to_g1s radixfile =
let =
(2 * G1.size_in_bytes) + G2.size_in_bytes
in
to_gs
radixfile
skip_header
G1.size_in_bytes
G1.of_bytes_exn
G1_carray.evaluation_ecfft
G1_carray.of_array
let to_g2s radixfile =
let power = power_of_radixfile radixfile in
let size = 1 lsl power in
let =
(2 * G1.size_in_bytes) + G2.size_in_bytes
in
let skip_g2s =
let skip_g1s = size * G1.size_in_bytes in
skip_header + skip_g1s
in
to_gs
radixfile
skip_g2s
G2.size_in_bytes
G2.of_bytes_exn
G2_carray.evaluation_ecfft
G2_carray.of_array
end