1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
let blake : ?key:string -> string -> bytes =
fun ?key s ->
let key = Option.map Bytes.of_string key in
let module Blake2b = Hacl_star.Hacl.Blake2b_32 in
Blake2b.hash ?key (Bytes.of_string s) 32
let ( / ) r n = r ^ "/" ^ n
let read_enc filepath filename enc =
let inc = open_in (filepath / filename) in
let file_size = In_channel.length inc |> Int64.to_int in
let data = Stdlib.really_input_string inc file_size in
close_in inc ;
match Data_encoding.Json.from_string data with
| Ok json -> Data_encoding.Json.destruct enc json
| Error _ -> raise (Invalid_argument "Could not read file")
let write_enc filepath filename enc data =
let outc = open_out (filepath / filename) in
Printf.fprintf outc "%s" Data_encoding.Json.(construct enc data |> to_string) ;
close_out outc
type symmetric_key = Crypto_box.Secretbox.key
type ciphertext = {nonce : Crypto_box.nonce; payload : bytes}
let ciphertext_encoding =
let open Data_encoding in
def "timelock.ciphertext"
@@ conv_with_guard
(fun ciphertext -> (ciphertext.nonce, ciphertext.payload))
(fun (nonce, payload) ->
if Bytes.length payload <= Crypto_box.tag_length then
Error "The ciphertext has a negative size"
else Ok {nonce; payload})
(obj2
(req "timelock.nonce" Crypto_box.nonce_encoding)
(req "timelock.payload" bytes))
let encrypt symmetric_key plaintext =
let nonce = Crypto_box.random_nonce () in
{
nonce;
payload = Crypto_box.Secretbox.secretbox symmetric_key plaintext nonce;
}
let decrypt symmetric_key ciphertext =
Crypto_box.Secretbox.secretbox_open
symmetric_key
ciphertext.payload
ciphertext.nonce
let rsa2048 =
Z.of_string
"25195908475657893494027183240048398571429282126204032027777137836043662020707595556264018525880784406918290641249515082189298559149176184502808489120072844992687392807287776735971418347270261896375014971824691165077613379859095700097330459748808428401797429100642458691817195118746121515172654632282216869987549182422433637259085141865462043576798423387184774447920739934236584823824281198163815010674810451660377306056201619676256133844143603833904414952634432190114657544454178424020924616515723350778707749817125772467962926386356373289912154831438167899885040445364023527381951378636564391212010397122822120720357"
let size_rsa2048 = 2048
type locked_value = Z.t
let to_locked_value_opt x =
let y = Z.of_string x in
if y >= rsa2048 then None else Some y
let to_locked_value_unsafe = Z.of_string
type unlocked_value = Z.t
type vdf_proof = Z.t
type vdf_tuple = {
locked_value : locked_value;
unlocked_value : unlocked_value;
vdf_proof : vdf_proof;
}
let vdf_tuple_encoding =
let open Data_encoding in
def "timelock.vdf_tuple"
@@ conv_with_guard
(fun vdf_tuple ->
(vdf_tuple.locked_value, vdf_tuple.unlocked_value, vdf_tuple.vdf_proof))
(fun (locked_value, unlocked_value, vdf_proof) ->
if Z.Compare.(locked_value < Z.zero || locked_value >= rsa2048) then
Error "locked_value is not in the rsa group"
else if Z.Compare.(locked_value <= Z.one) then
Error "invalid value for locked_value"
else if
Z.Compare.(unlocked_value < Z.zero || unlocked_value >= rsa2048)
then Error "unlocked_value is not in the rsa group"
else if Z.Compare.(vdf_proof < Z.zero || vdf_proof >= rsa2048) then
Error "VDF proof is not in the rsa group"
else Ok {locked_value; unlocked_value; vdf_proof})
(obj3
(req "locked_value" n)
(req "unlocked_value" n)
(req "vdf_proof" n))
type timelock_proof = {vdf_tuple : vdf_tuple; nonce : Z.t}
let proof_encoding =
let open Data_encoding in
def "timelock.proof"
@@ conv_with_guard
(fun proof -> (proof.vdf_tuple, proof.nonce))
(fun (t, nonce) ->
if Z.Compare.(t.locked_value < Z.zero || t.locked_value >= rsa2048)
then Error "locked_value is not in the rsa group"
else if Z.Compare.(t.locked_value <= Z.one) then
Error "invalid value for locked_value"
else if
Z.Compare.(t.unlocked_value < Z.zero || t.unlocked_value >= rsa2048)
then Error "unlocked_value is not in the rsa group"
else if Z.Compare.(t.vdf_proof < Z.zero || t.vdf_proof >= rsa2048) then
Error "VDF proof is not in the rsa group"
else if Z.Compare.(nonce < Z.one) then
Error "nonce is null or negative"
else Ok {vdf_tuple = t; nonce})
(obj2 (req "vdf_tuple" vdf_tuple_encoding) (req "nonce" n))
let gen_locked_value_unsafe () =
let random_z size = Hacl.Rand.gen size |> Bytes.to_string |> Z.of_bits in
Z.erem (random_z (Int.div size_rsa2048 8 + 16)) rsa2048
let gen_locked_value_opt () =
try Some (gen_locked_value_unsafe ()) with _ -> None
let generate_z ?(rand = Hacl.Rand.gen) () =
let random_z size = rand size |> Bytes.to_string |> Z.of_bits in
Z.erem (random_z (size_rsa2048 + 16)) rsa2048
let hash_to_prime ~time value key =
let personalization = "\032" in
let to_hash =
String.concat
"\xff\x00\xff\x00\xff\x00\xff\x00"
(Int.to_string time :: List.map Z.to_bits [rsa2048; value; key])
in
let hash_result = blake ~key:personalization to_hash in
Z.(nextprime (of_bits (Bytes.to_string hash_result)))
let prove_wesolowski ~time locked_value unlocked_value =
let l = hash_to_prime ~time locked_value unlocked_value in
let pi, r = Z.(ref one, ref one) in
for _ = 1 to time do
let two_r = Z.(!r lsl 1) in
(r := Z.(two_r mod l)) ;
let pi_sqr = Z.(!pi * !pi mod rsa2048) in
pi := if two_r >= l then Z.(pi_sqr * locked_value) else pi_sqr
done ;
Z.(!pi mod rsa2048)
let prove ~time locked_value unlocked_value =
let vdf_proof = prove_wesolowski ~time locked_value unlocked_value in
let vdf_tuple = {locked_value; unlocked_value; vdf_proof} in
{vdf_tuple; nonce = Z.one}
let verify_wesolowski ~time vdf_tuple =
let l = hash_to_prime ~time vdf_tuple.locked_value vdf_tuple.unlocked_value in
let r = Z.(powm (of_int 2) (Z.of_int time) l) in
vdf_tuple.unlocked_value
= Z.(
powm vdf_tuple.vdf_proof l rsa2048
* powm vdf_tuple.locked_value r rsa2048
mod rsa2048)
let verify ~time locked_value proof =
let randomized_challenge =
Z.powm proof.vdf_tuple.locked_value proof.nonce rsa2048
in
let b_exp = Z.(equal randomized_challenge locked_value) in
let b_weso = verify_wesolowski ~time proof.vdf_tuple in
b_exp && b_weso
let rec unlock_timelock ~time locked_value =
if time = 0 then locked_value
else if locked_value = Z.zero then Z.zero
else if locked_value = Z.one then Z.one
else
unlock_timelock
~time:Int.(pred time)
Z.(locked_value * locked_value mod rsa2048)
let unlock_and_prove ~time locked_value =
let unlocked_value = unlock_timelock ~time locked_value in
prove ~time locked_value unlocked_value
let precompute_timelock ?(locked_value = None) ?(precompute_path = None) ~time
() =
let locked_value =
match locked_value with
| None -> generate_z ()
| Some c ->
let c_mod = Z.(c mod rsa2048) in
assert (Z.compare c_mod Z.one = 1) ;
c_mod
in
let compute_tuple () =
let unlocked_value = unlock_timelock ~time locked_value in
(prove ~time locked_value unlocked_value).vdf_tuple
in
match precompute_path with
| None -> compute_tuple ()
| Some filepath ->
let brsa = Z.to_bits rsa2048 in
let file_prefix = blake brsa |> Hex.of_bytes |> Hex.show in
let filename = file_prefix ^ "_" ^ string_of_int time ^ ".json" in
let file_exists = Sys.file_exists (filepath / filename) in
if file_exists then read_enc filepath filename vdf_tuple_encoding
else
let precomputed = compute_tuple () in
write_enc filepath filename vdf_tuple_encoding precomputed ;
precomputed
let proof_of_vdf_tuple_aux ?rand ~time vdf_tuple =
if Z.compare vdf_tuple.locked_value Z.one < 1 then
raise (Invalid_argument "Timelock puzzle is smaller than 1.") ;
if Z.compare vdf_tuple.unlocked_value Z.zero < 1 then
raise (Invalid_argument "Timelock solution is smaller than 0.") ;
if Z.compare vdf_tuple.vdf_proof Z.zero < 1 then
raise (Invalid_argument "Timelock proof is smaller than 0.") ;
if
Z.compare vdf_tuple.locked_value rsa2048 > 0
|| Z.compare vdf_tuple.unlocked_value rsa2048 > 0
|| Z.compare vdf_tuple.vdf_proof rsa2048 > -1
then
raise
(Invalid_argument
"Invalid timelock tuple, its elements are not in the RSA group.") ;
if verify_wesolowski ~time vdf_tuple then
let nonce =
(Option.value rand ~default:Hacl.Rand.gen) 16
|> Bytes.to_string |> Z.of_bits
in
let randomized_locked_value = Z.powm vdf_tuple.locked_value nonce rsa2048 in
let proof = {vdf_tuple; nonce} in
(randomized_locked_value, proof)
else raise (Invalid_argument "Timelock tuple verification failed.")
let proof_of_vdf_tuple ~time vdf_tuple = proof_of_vdf_tuple_aux ~time vdf_tuple
let timelock_proof_to_symmetric_key proof =
let updated = Z.powm proof.vdf_tuple.unlocked_value proof.nonce rsa2048 in
let kdf_key = "Tezoskdftimelockv1" in
let hash = blake ~key:kdf_key (Z.to_string updated) in
Crypto_box.Secretbox.unsafe_of_bytes hash
type chest = {locked_value : locked_value; ciphertext : ciphertext}
let chest_encoding =
let open Data_encoding in
def "timelock.chest"
@@ conv_with_guard
(fun chest -> (chest.locked_value, chest.ciphertext))
(fun (locked_value, ciphertext) ->
if Z.Compare.(locked_value < Z.zero) then
Error "locked value is not in the rsa group"
else if Z.Compare.(locked_value <= Z.one) then
Error "invalid locked_value"
else if not @@ (Bytes.length ciphertext.payload > Crypto_box.tag_length)
then Error "unexpected payload (smaller than expected tag length)"
else Ok {locked_value; ciphertext})
(obj2 (req "locked_value" n) (req "ciphertext" ciphertext_encoding))
type chest_key = timelock_proof
let chest_key_encoding = proof_encoding
type opening_result = Correct of Bytes.t | Bogus_opening
let create_chest_and_chest_key ?(precompute_path = None) ~payload ~time () =
let locked_value, proof =
if time <= 0 then
raise
(Invalid_argument
"Timelock.create_chest_and_chest_key: the time bound must be \
positive") ;
let vdf_tuple = precompute_timelock ~time ~precompute_path () in
proof_of_vdf_tuple ~time vdf_tuple
in
let sym_key = timelock_proof_to_symmetric_key proof in
let ciphertext = encrypt sym_key payload in
({locked_value; ciphertext}, proof)
let create_chest_key chest ~time =
if time <= 0 then
raise
(Invalid_argument
"Timelock.create_chest_key: the time bound must be positive") ;
unlock_and_prove ~time chest.locked_value
let get_plaintext_size chest =
assert (Bytes.length chest.ciphertext.payload > Crypto_box.tag_length) ;
Bytes.length chest.ciphertext.payload - Crypto_box.tag_length
let open_chest chest chest_key ~time =
if time <= 0 then
raise
(Invalid_argument "Timelock.open_chest: the time bound must be positive")
else if not @@ verify ~time chest.locked_value chest_key then Bogus_opening
else
let sym_key = timelock_proof_to_symmetric_key chest_key in
match decrypt sym_key chest.ciphertext with
| None -> Correct Bytes.empty
| Some plaintext -> Correct plaintext
module Internal_for_tests = struct
let rsa2048 = rsa2048
let locked_value_to_z x = x
let unlocked_value_to_z x = x
let vdf_proof_to_z x = x
let to_vdf_tuple_unsafe locked_value unlocked_value vdf_proof =
{locked_value; unlocked_value; vdf_proof}
let hash_to_prime = hash_to_prime
let prove_wesolowski = prove_wesolowski
let verify_wesolowski = verify_wesolowski
end
let gen_random_bytes_bench_unsafe ~rng_state size =
Bytes.init size (fun _ -> Char.chr (Random.State.int rng_state 256))
let chest_sampler ~rng_state ~plaintext_size ~time =
if time <= 0 then
raise
(Invalid_argument "Timelock.open_chest: the time bound must be positive") ;
let plaintext = gen_random_bytes_bench_unsafe ~rng_state plaintext_size in
create_chest_and_chest_key ~payload:plaintext ~time ()