Source file polynomial_protocol.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
open Kzg.Bls
open Kzg.Utils
open Identities
(** A polynomial protocol allows a prover to convince a verifier of the fact
that certain algebraic identites between polynomials (polynomials that have
been previously committed) hold when evaluated over a set of points.
(In our implementation such set of points must be a subgroup of roots of
unity.)
For example, let K be a field and let H be a subset of K.
Let f1(X), f2(X) and f3(X) be univariate polynomials over K and let
C1, C2 and C3 be polynomial commitments to f1, f2 and f3, respectively.
A polynomial protocol allows a prover to argue knowledge of:
{[
PoK{ (f1, f2, f3) : Ci = Com(fi) ∀ i /\ f1(x) * f2(x) = f3(x) ∀ x ∈ H }
]}
This can be accomplished by evaluating polynomial commitments at a single
point ξ (uniformly sampled from K). For that, note that the above
polynomial identity holds for every x ∈ H iff polynomial (f1 * f2 - f3) is
divisible by Zh, the minimal (monic) polynomial that vanishes over set H.
Thus, the prover can commit to polynomial T := (f1 * f2 - f3) / Zh and
evaluate polynomial commitments C1, C2, C3, T at ξ (chosen after T). Let
c1, c2, c3, t be such evaluations.
The verifier can then check that t * Zh(ξ) = c1 * c2 - c3.
A general polynomial protocol should allow for multiple identities involving
addition, multiplication and composition of polynomials.
See {{: https://eprint.iacr.org/2019/953.pdf }2019/953 Section 4.1} for
more details. *)
(** Functor building an implementation of a polynomial protocol given a
polynomial commitment scheme [PC]. *)
module Make_impl (PC : Kzg.Interfaces.Polynomial_commitment) = struct
module PC = PC
type prover_public_parameters = PC.Public_parameters.prover [@@deriving repr]
type verifier_public_parameters = PC.Public_parameters.verifier
[@@deriving repr]
type proof = {
cm_t : PC.Commitment.t;
pc_proof : PC.proof;
pc_answers : PC.answer list;
}
[@@deriving repr]
(** [split_t n t nb_of_t_chunks] splits [t] polynomial in [nb_of_t_chunks]
polynomials of at most [n] coefficients (and at most degree [n]-1),
except the last one that may have more coeffictients depending on [t]’s
degree
*)
let split_t n t nb_of_t_chunks =
let nb_digits = String.length @@ string_of_int (nb_of_t_chunks - 1) in
List.mapi
(fun i t_i -> ("T_" ^ Csir.string_key_of_int ~nb_digits i, t_i))
(Poly.split ~nb_chunks:nb_of_t_chunks n t)
|> SMap.of_list
let compute_t ~n ~alpha ~nb_of_t_chunks evaluated_identities =
let nb_ids = SMap.cardinal evaluated_identities in
let evaluations = SMap.values evaluated_identities in
let alphas = Fr_generation.powers nb_ids alpha |> Array.to_list in
let s_eval = Evaluations.linear_c ~evaluations ~linear_coeffs:alphas () in
let s_deg = Evaluations.degree s_eval in
let domain = Domain.build_power_of_two (Z.log2up (Z.of_int (s_deg + 1))) in
let s = Evaluations.interpolation_fft domain s_eval in
let t, rem = Poly.division_xn s n Scalar.(negate one) in
if Poly.is_zero rem then split_t n t nb_of_t_chunks
else raise @@ Poly.Rest_not_null "T is not divisible by Zh"
let eval_and_batch_ids (alpha, x) pc_answers identities =
let answers =
let f _key m1 m2 = Some (SMap.union_disjoint m1 m2) in
List.fold_left (SMap.union f) SMap.empty pc_answers
in
identities x answers |> SMap.values |> Fr_generation.batch alpha
let verify_t n x ids_batch t_evals =
let t_eval = Fr_generation.batch (Scalar.pow x (Z.of_int n)) t_evals in
let zh = Scalar.(sub (pow x (Z.of_int n)) one) in
Scalar.(eq ids_batch (t_eval * zh))
let setup ~setup_params ~srs = PC.Public_parameters.setup setup_params srs
let prove_aux pc_public_parameters transcript n generator secrets eval_points
evaluations identities nb_of_t_chunks =
let alpha, transcript = Fr_generation.random_fr transcript in
let evaluated_ids = identities evaluations in
let t = compute_t ~n ~alpha ~nb_of_t_chunks evaluated_ids in
let cm_t, t_prover_aux = PC.commit pc_public_parameters t in
let transcript = Transcript.expand PC.Commitment.t cm_t transcript in
let x, transcript = Fr_generation.random_fr transcript in
let prover_aux_list = t_prover_aux :: List.map snd secrets in
let polys_list = t :: List.map fst secrets in
let eval_points = [X] :: eval_points in
let query_list = List.map (convert_eval_points ~generator ~x) eval_points in
let answer_list = List.map2 PC.evaluate polys_list query_list in
( (alpha, x, answer_list, cm_t),
polys_list,
prover_aux_list,
query_list,
transcript )
let prove pc_public_parameters transcript ~n ~generator ~secrets ~eval_points
~evaluations ~identities ~nb_of_t_chunks =
let ( (_, _, answer_list, cm_t),
polys_list,
prover_aux_list,
query_list,
transcript ) =
prove_aux
pc_public_parameters
transcript
n
generator
secrets
eval_points
evaluations
identities
nb_of_t_chunks
in
let pc_proof, transcript =
PC.prove
pc_public_parameters
transcript
polys_list
prover_aux_list
query_list
answer_list
in
({cm_t; pc_proof; pc_answers = answer_list}, transcript)
type pp_commit_to_t_r = Evaluations.t SMap.t [@@deriving repr]
let verify_aux transcript generator commitments eval_points proof =
let alpha, transcript = Fr_generation.random_fr transcript in
let transcript = Transcript.expand PC.Commitment.t proof.cm_t transcript in
let x, transcript = Fr_generation.random_fr transcript in
let cm_list = proof.cm_t :: commitments in
let eval_points = [X] :: eval_points in
let query_list = List.map (convert_eval_points ~generator ~x) eval_points in
(alpha, x, transcript, cm_list, query_list)
let verify pc_public_parameters transcript ~n ~generator ~commitments
~eval_points ~identities proof =
let alpha, x, transcript, cmts, query_list =
verify_aux transcript generator commitments eval_points proof
in
let pc_verif, transcript =
PC.verify
pc_public_parameters
transcript
cmts
query_list
proof.pc_answers
proof.pc_proof
in
let ids_batch = eval_and_batch_ids (alpha, x) proof.pc_answers identities in
let t_verif =
let t_evals =
List.hd proof.pc_answers
|> SMap.find (string_of_eval_point X)
|> SMap.values
in
verify_t n x ids_batch t_evals
in
(pc_verif && t_verif, transcript)
end
(** Output signature of the functor [Polynomial_protocol.Make]. *)
module type S = sig
(** Underlying polynomial commitment scheme on which the polynomial protocol
is based. Input of the functor [Polynomial_protocol.Make]. *)
module PC : Kzg.Interfaces.Polynomial_commitment
(** The type of prover public parameters. *)
type prover_public_parameters = PC.Public_parameters.prover [@@deriving repr]
(** The type of verifier public parameters. *)
type verifier_public_parameters = PC.Public_parameters.verifier
[@@deriving repr]
(** The type for proofs, containing a commitment to the polynomial T that
asserts the satisfiability of the identities over the subset of interest,
as well as a [PC] proof and a list of [PC] answers. *)
type proof = {
cm_t : PC.Commitment.t;
pc_proof : PC.proof;
pc_answers : PC.answer list;
}
[@@deriving repr]
(** The polynomial commitment setup function, requires a labeled
argument of setup parameters for the underlying [PC] and a labeled
argument containing the path location of a set of SRS files. *)
val setup :
setup_params:PC.Public_parameters.setup_params ->
srs:Srs.t * Srs.t ->
prover_public_parameters * verifier_public_parameters * Transcript.t
(** The prover function. Takes as input the [prover_public_parameters],
an initial [transcript] (possibly including a context if this [prove] is
used as a building block of a bigger protocol), the size [n] of subgroup H,
the canonical [generator] of subgroup H, a list of [secrets] including
polynomials that have supposedly been committed (and a verifier received
such commitments) as well as prover auxiliary information generated
during the committing process, a list of evaluation point lists specifying
the evaluation points where each secret needs to be evaluated at,
a map of the above-mentioned polynomials this time in FFT [evaluations] form,
for efficient polynomial multiplication, and some [prover_identities] that
are supposedly satisfied by the secret polynomials.
Outputs a proof and an updated transcript. *)
val prove :
prover_public_parameters ->
Transcript.t ->
n:int ->
generator:Scalar.t ->
secrets:(Poly.t SMap.t * PC.Commitment.prover_aux) list ->
eval_points:eval_point list list ->
evaluations:Evaluations.t SMap.t ->
identities:prover_identities ->
nb_of_t_chunks:int ->
proof * Transcript.t
(** The verifier function. Takes as input the [verifier_public_parameters],
an initial [transcript] (that should coincide with the initial transcript
used by [prove]), the size [n] of subgroup H, the canonical [generator] of
subgroup H, a list of [commitments] to the secret polynomials by the prover,
a list of evaluation points as in [prove], some [verifier_identities], and
a [proof].
Outputs a [bool] value representing acceptance or rejection. *)
val verify :
verifier_public_parameters ->
Transcript.t ->
n:int ->
generator:Scalar.t ->
commitments:PC.Commitment.t list ->
eval_points:eval_point list list ->
identities:verifier_identities ->
proof ->
bool * Transcript.t
end
module Make : functor (PC : Kzg.Interfaces.Polynomial_commitment) ->
S with module PC = PC =
Make_impl
include Make (Kzg.Polynomial_commitment)