Source file timelock_legacy.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
open Tezos_hacl
type rsa_secret = {p : Z.t; q : Z.t}
type rsa_public = Z.t
type timelock_proof = Z.t
type locked_value = Z.t
type unlocked_value = Z.t
type symmetric_key = Crypto_box.Secretbox.key
type ciphertext = {nonce : Crypto_box.nonce; payload : bytes}
let size_modulus = 2048
let unlocked_value_to_symmetric_key unlocked_value =
let kdf_key = "Tezoskdftimelockv0" in
let to_hash = Z.to_string unlocked_value in
let hash = Blake2B.(to_bytes @@ hash_string ~key:kdf_key [to_hash]) in
Crypto_box.Secretbox.unsafe_of_bytes hash
let random_z size = Hacl.Rand.gen size |> Bytes.to_string |> Z.of_bits
let random_prime_z size =
let rec aux () =
let trial = random_z size in
if Z.probab_prime trial 25 = 0 then aux () else trial
in
aux ()
let gen_rsa_keys () =
let size = size_modulus / (2 * 8) in
let p = random_prime_z size in
let q = random_prime_z size in
(Z.(p * q), {p; q})
let gen_locked_value rsa_public =
Z.erem (random_z ((size_modulus / 8) + 16)) rsa_public
let hash_to_prime rsa_public ~time value key =
let personalization = Bytes.of_string "\032" in
let s =
String.concat
"\xff\x00\xff\x00\xff\x00\xff\x00"
(Int.to_string time :: List.map Z.to_bits [rsa_public; value; key])
in
let (Hacl.Blake2b.Hash hash_result) =
Hacl.Blake2b.direct ~key:personalization (Bytes.of_string s) 32
in
Z.(nextprime (of_bits (Bytes.to_string hash_result)))
let prove_without_secret rsa_public ~time locked_value unlocked_value =
let l = hash_to_prime rsa_public ~time locked_value unlocked_value in
let pow = Z.(pow (of_int 2) time / l) in
Z.powm locked_value pow rsa_public
let prove_with_secret secret ~time locked_value unlocked_value =
let rsa_public = Z.(secret.p * secret.q) in
let l = hash_to_prime rsa_public ~time locked_value unlocked_value in
let phi = Z.((secret.p - one) * (secret.q - one)) in
let pow = Z.(pow (of_int 2) time / l mod phi) in
Z.powm locked_value pow rsa_public
let verify_timelock rsa_public ~time locked_value unlocked_value proof =
let l = hash_to_prime rsa_public ~time locked_value unlocked_value in
let r = Z.(powm (of_int 2) (Z.of_int time) l) in
unlocked_value
= Z.(powm proof l rsa_public * powm locked_value r rsa_public mod rsa_public)
let unlock_with_secret secret ~(time : int) (locked_value : locked_value) =
let phi = Z.((secret.p - one) * (secret.q - one)) in
let e = Z.powm (Z.of_int 2) (Z.of_int time) phi in
Z.powm locked_value e Z.(secret.p * secret.q)
let unlock_and_prove_with_secret secret ~(time : int)
(locked_value : locked_value) =
let unlocked_value = unlock_with_secret secret ~time locked_value in
let pi = prove_with_secret secret ~time locked_value unlocked_value in
(unlocked_value, pi)
let locked_value_to_symmetric_key_with_secret secret ~(time : int)
(locked_value : locked_value) : symmetric_key =
unlocked_value_to_symmetric_key (unlock_with_secret secret ~time locked_value)
let unlock_and_prove_without_secret rsa_public ~time locked_value =
let rec aux time v =
if time = 0 then v else aux Int.(pred time) Z.(v * v mod rsa_public)
in
let unlocked_value = aux time locked_value in
let pi = prove_without_secret rsa_public ~time locked_value unlocked_value in
(unlocked_value, pi)
let locked_value_to_symmetric_key_with_proof (rsa_public : rsa_public)
~(time : int) locked_value unlocked_value proof =
if verify_timelock rsa_public ~time locked_value unlocked_value proof then
Some (unlocked_value_to_symmetric_key unlocked_value)
else None
let encrypt symmetric_key plaintext =
let nonce = Crypto_box.random_nonce () in
{
nonce;
payload = Crypto_box.Secretbox.secretbox symmetric_key plaintext nonce;
}
let decrypt symmetric_key ciphertext =
Crypto_box.Secretbox.secretbox_open
symmetric_key
ciphertext.payload
ciphertext.nonce
type chest_key = {unlocked_value : unlocked_value; proof : timelock_proof}
type chest = {
locked_value : locked_value;
rsa_public : rsa_public;
ciphertext : ciphertext;
}
let proof_encoding = Data_encoding.n
let chest_key_encoding =
let open Data_encoding in
def "timelock.chest_key"
@@ conv
(fun chest_key -> (chest_key.unlocked_value, chest_key.proof))
(fun (unlocked_value, proof) -> {unlocked_value; proof})
(obj2
(req "unlocked_value" Data_encoding.n)
(req "proof" Data_encoding.n))
let ciphertext_encoding =
let open Data_encoding in
def "timelock.ciphertext"
@@ conv_with_guard
(fun ciphertext -> (ciphertext.nonce, ciphertext.payload))
(fun (nonce, payload) ->
if Bytes.length payload <= Crypto_box.tag_length then
Error "The ciphertext has a negative size"
else Ok {nonce; payload})
(obj2
(req "timelock.nonce" Crypto_box.nonce_encoding)
(req "timelock.payload" bytes))
let min_rsa_modulus = Z.(shift_left (of_int 2) 2000)
let chest_encoding =
let open Data_encoding in
def "timelock.chest"
@@ conv_with_guard
(fun chest -> (chest.locked_value, chest.rsa_public, chest.ciphertext))
(fun (locked_value, rsa_public, ciphertext) ->
if Z.Compare.(locked_value < Z.zero || locked_value >= rsa_public) then
Error "locked value is not in the rsa group"
else if Z.leq rsa_public min_rsa_modulus then
Error "rsa modulus is too small"
else Ok {locked_value; rsa_public; ciphertext})
(obj3
(req "locked_value" n)
(req "rsa_public" n)
(req "ciphertext" ciphertext_encoding))
type opening_result = Correct of Bytes.t | Bogus_cipher | Bogus_opening
let open_chest chest chest_key ~time =
if time < 0 then failwith "Timelock: trying to open with a negative time"
else
let sym_key_opt =
locked_value_to_symmetric_key_with_proof
chest.rsa_public
~time
chest.locked_value
chest_key.unlocked_value
chest_key.proof
in
match sym_key_opt with
| None -> Bogus_opening
| Some sym_key -> (
let plaintext_opt = decrypt sym_key chest.ciphertext in
match plaintext_opt with
| None -> Bogus_cipher
| Some plaintext -> Correct plaintext)
let create_chest_and_chest_key ~payload ~time =
let rsa_public, rsa_secret = gen_rsa_keys () in
let locked_value = gen_locked_value rsa_public in
let unlocked_value, proof =
unlock_and_prove_with_secret rsa_secret ~time locked_value
in
let sym_key = unlocked_value_to_symmetric_key unlocked_value in
let ciphertext = encrypt sym_key payload in
({locked_value; rsa_public; ciphertext}, {unlocked_value; proof})
let create_chest_key chest ~time =
let unlocked_value, proof =
unlock_and_prove_without_secret chest.rsa_public ~time chest.locked_value
in
{unlocked_value; proof}
let get_plaintext_size chest =
Bytes.length chest.ciphertext.payload - Crypto_box.tag_length
let gen_random_bytes_unsafe size =
Bytes.init size (fun _ -> Char.chr (Random.int 256))
let gen_random_z_unsafe size =
gen_random_bytes_unsafe size |> Bytes.to_string |> Z.of_bits
let gen_random_prime_unsafe size = gen_random_z_unsafe size |> Z.nextprime
let gen_rsa_keys_unsafe () =
let size = size_modulus / (2 * 8) in
let p = gen_random_prime_unsafe size in
let q = gen_random_prime_unsafe size in
(Z.(p * q), {p; q})
let gen_locked_value_unsafe rsa_public =
Z.erem (gen_random_z_unsafe (size_modulus / 8)) rsa_public
let encrypt_unsafe symmetric_key plaintext =
let nonce =
Data_encoding.Binary.of_bytes_exn
Crypto_box.nonce_encoding
(gen_random_bytes_unsafe Crypto_box.nonce_size)
in
{
nonce;
payload = Crypto_box.Secretbox.secretbox symmetric_key plaintext nonce;
}
let chest_sampler ~rng_state ~plaintext_size ~time =
Random.set_state rng_state ;
let plaintext = gen_random_bytes_unsafe plaintext_size in
let rsa_public, rsa_secret = gen_rsa_keys_unsafe () in
let locked_value = gen_locked_value_unsafe rsa_public in
let unlocked_value, proof =
unlock_and_prove_with_secret rsa_secret ~time locked_value
in
let sym_key = unlocked_value_to_symmetric_key unlocked_value in
let ciphertext = encrypt_unsafe sym_key plaintext in
({locked_value; rsa_public; ciphertext}, {unlocked_value; proof})