12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788(*****************************************************************************)(* *)(* MIT License *)(* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *)(* *)(* Permission is hereby granted, free of charge, to any person obtaining a *)(* copy of this software and associated documentation files (the "Software"),*)(* to deal in the Software without restriction, including without limitation *)(* the rights to use, copy, modify, merge, publish, distribute, sublicense, *)(* and/or sell copies of the Software, and to permit persons to whom the *)(* Software is furnished to do so, subject to the following conditions: *)(* *)(* The above copyright notice and this permission notice shall be included *)(* in all copies or substantial portions of the Software. *)(* *)(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *)(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *)(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *)(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *)(* DEALINGS IN THE SOFTWARE. *)(* *)(*****************************************************************************)openKzg.BlsopenPlonk.IdentitiesmoduletypeS=sigmodulePC:Polynomial_commitment.PC_for_distribution_sigincludePlonk.Polynomial_protocol.SwithmodulePC:=PC(** [compute_t ~n ~alpha evaluations] returns a polynomial T splitted in chunks,
where [T(X) = (sum_i alpha^i evaluations[i]) / (X^n - 1)] and the returned
chunks [{ 'T_0' -> T0; 'T_1' -> T1; 'T_2' -> T2 }] are such that
[T = T0 + X^n T1 + X^{2n} T2]. *)valcompute_t:n:int->alpha:Scalar.t->nb_of_t_chunks:int->Evaluations.tKzg.SMap.t->Evaluations.polynomialKzg.SMap.tendmoduletypeSuper=sigmodulePC:Kzg_pack.Super_PC_sigincludeAggregation.Polynomial_protocol.SwithmodulePC:=PC(** [compute_t ~n ~alpha evaluations] returns a polynomial T splitted in chunks,
where [T(X) = (sum_i alpha^i evaluations[i]) / (X^n - 1)] and the returned
chunks [{ 'T_0' -> T0; 'T_1' -> T1; 'T_2' -> T2 }] are such that
[T = T0 + X^n T1 + X^{2n} T2]. *)valcompute_t:n:int->alpha:Scalar.t->nb_of_t_chunks:int->Evaluations.tKzg.SMap.t->Evaluations.polynomialKzg.SMap.tendmoduleMake(PC:Polynomial_commitment.PC_for_distribution_sig):SwithmodulePC=PC=structmodulePP=Plonk.Polynomial_protocol.Make_impl(PC)modulePC=PCletcompute_t=PP.compute_tinclude(PP:Plonk.Polynomial_protocol.SwithmodulePC:=PC)endmoduleMakeSuper(PC:Kzg_pack.Super_PC_sig)(Answers_commitment:Plonk.Input_commitment.S):SuperwithmodulePC=PCwithmoduleAnswers_commitment=Answers_commitment=structmodulePP=Aggregation.Polynomial_protocol.Make_impl(PC)(Answers_commitment)modulePC=PCmoduleAnswers_commitment=Answers_commitmentinclude(PP:moduletypeofPPwithmodulePC:=PCwithmoduleAnswers_commitment:=Answers_commitment)end