1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
open Kzg.Bls
open Identities
open Kzg.Utils
module type Cq_sig = sig
exception Entry_not_in_table
type prover_public_parameters
type verifier_public_parameters
type proof
val setup :
srs:Srs_g1.t * Srs_g2.t ->
wire_size:int ->
table:S.t array list ->
prover_public_parameters * verifier_public_parameters
val prove :
prover_public_parameters ->
Transcript.t ->
S.t array SMap.t list ->
proof * Transcript.t
val verify :
verifier_public_parameters -> Transcript.t -> proof -> bool * Transcript.t
end
module Internal = struct
open Utils
module PC = Kzg.Polynomial_commitment
module ISet = Set.Make (Int)
module IMap = Map.Make (Int)
exception Entry_not_in_table
type transcript = bytes
type prover_public_parameters = {
n : int;
domain_k : Domain.t;
domain_2k : Domain.t;
table : ISet.t Scalar_map.t list;
cms_lagrange : G1.t array;
cms_lagrange_0 : G1.t array;
q : G1.t array list;
pc : PC.Public_parameters.prover;
}
type verifier_public_parameters = {
n : int;
k : int;
srs2_0 : G2.t;
srs2_1 : G2.t;
srs2_N_1_k_2 : G2.t;
cm_table : G2.t list;
cm_zv : G2.t;
pc : PC.Public_parameters.verifier;
}
type proof = {
cm_f : PC.Commitment.t;
cm_f_agg : PC.Commitment.t;
cm_a : PC.Commitment.t;
cm_b0 : PC.Commitment.t;
cm_qa : PC.Commitment.t;
cm_m : PC.Commitment.t;
cm_p : Kzg.Degree_check.Proof.t;
cm_b0_qb_f : PC.Commitment.t;
a0 : Scalar.t list;
b0y : Scalar.t SMap.t;
fy : Scalar.t SMap.t;
fy_agg : Scalar.t SMap.t;
pc : PC.proof;
cm_a0 : G1.t;
}
let f_name = "f"
let m_name = "m"
let a_name = "a"
let qa_name = "qa"
let b0_name = "b0"
let qb_name = "qb"
let p_name = "p"
let f_agg_name = "f_agg"
let aggregate_cm cm etas =
Kzg.Commitment.Commit.with_affine_array_1
(PC.Commitment.to_map cm |> SMap.values |> Array.of_list)
etas
let get_pc_query gamma =
List.map (convert_eval_points ~generator:Scalar.zero ~x:gamma) [[X]]
let commit1 srs =
PC.(Commitment.commit_single (Public_parameters.get_commit_parameters srs))
let open_at_0 p =
let q, r =
Poly.(division_xn (p - constant (evaluate p Scalar.zero)) 1 Scalar.zero)
in
assert (Poly.is_zero r) ;
q
let compute_and_commit f list =
let m, l = List.map f list |> Array.of_list |> Array.split in
(m, Kzg.Commitment.Commit.with_affine_array_1 l m)
let setup_prover (n, domain) k (table_arrays, table_polys) pc =
let domain_k = Domain.build k in
let domain_2k = Domain.build (2 * k) in
let table =
List.map
(fun t ->
fst
@@ Array.fold_left
(fun (acc, i) fi ->
( Scalar_map.update
fi
(function
| None -> Some (ISet.singleton i)
| Some sk -> Some (ISet.add i sk))
acc,
i + 1 ))
(Scalar_map.empty, 0)
t)
table_arrays
in
let lagrange =
Array.init n (fun i ->
Evaluations.init ~degree:(n - 1) n (fun j ->
if j = i then Scalar.one else Scalar.zero)
|> Evaluations.interpolation_fft domain)
in
let cms_lagrange = Array.map (commit1 pc) lagrange in
let cms_lagrange_0 =
Array.map (fun p -> commit1 pc @@ open_at_0 p) lagrange
in
let q =
List.map2
(fun t_poly t_array ->
Array.init n (fun i ->
let q, r =
Poly.(
division_xn
(lagrange.(i) * (t_poly - constant t_array.(i)))
n
Scalar.(negate one))
in
if not (Poly.is_zero r) then
failwith "Cq.setup_prover : division error." ;
commit1 pc q))
table_polys
table_arrays
in
{n; domain_k; domain_2k; table; q; cms_lagrange; cms_lagrange_0; pc}
let setup_verifier (_srs1, srs2) n k table_poly pc =
let cm_zv =
try G2.(add (Srs_g2.get srs2 n) (negate one))
with Invalid_argument _ ->
raise
(Kzg.Commitment.SRS_too_short
(Printf.sprintf
"Cq.setup_verifier : SRS_2 of size at least (%d + 1) expected \
(size %d received)."
n
(Srs_g2.size srs2)))
in
let cm_table = List.map (Kzg.Commitment.Commit.with_srs2 srs2) table_poly in
let srs2_0 = Srs_g2.get srs2 0 in
let srs2_1 = Srs_g2.get srs2 1 in
let srs2_N_1_k_2 = Srs_g2.get srs2 (n - 1 - (k - 2)) in
{n; k; srs2_0; srs2_1; srs2_N_1_k_2; cm_table; cm_zv; pc}
let setup ~srs ~wire_size ~table =
let len_t = Array.length (List.hd table) in
let n = 1 lsl Z.(log2up (of_int len_t)) in
let table =
if n = len_t then table
else
List.map
(fun t ->
if Array.length t <> len_t then
raise (Invalid_argument "Table columns have different lengths.") ;
Array.(append t (init (n - len_t) (Fun.const t.(0)))))
table
in
if wire_size > n then
raise
(Invalid_argument
(Printf.sprintf
"Wire (size = %d) greater than table (size = %d)."
wire_size
n)) ;
let domain = Domain.build n in
let table_polys = List.map (Evaluations.interpolation_fft2 domain) table in
let pc_prv, pc_vrf, _ = PC.Public_parameters.setup 0 (srs, srs) in
let prv = setup_prover (n, domain) wire_size (table, table_polys) pc_prv in
let vrf = setup_verifier srs n wire_size table_polys pc_vrf in
(prv, vrf)
let compute_m_and_t_sparse pp f_arrays f_agg =
let f_arrays = SMap.values f_arrays in
let m_and_t_sparse =
Array.fold_left
(fun (m_map, i) f_agg ->
let idx, _ =
List.fold_left2
(fun (acc, first) f t ->
match Scalar_map.find_opt f.(i) t with
| None -> raise Entry_not_in_table
| Some idx ->
((if first then idx else ISet.inter acc idx), false))
(ISet.empty, true)
f_arrays
pp.table
in
let idx =
try ISet.choose idx with Not_found -> raise Entry_not_in_table
in
( IMap.update
idx
(function
| None -> Some (1, f_agg) | Some (nb, _) -> Some (nb + 1, f_agg))
m_map,
i + 1 ))
(IMap.empty, 0)
f_agg
|> fst |> IMap.to_seq |> List.of_seq
|> List.map (fun (i, (m, t)) -> (i, Scalar.of_int m, t))
in
let _, cm_m =
compute_and_commit
(fun (i, m, _) -> (m, pp.cms_lagrange.(i)))
m_and_t_sparse
in
(m_and_t_sparse, cm_m)
let compute_a pp beta m_and_t =
let a, cm_a =
compute_and_commit
Scalar.(fun (i, mi, ti) -> (mi / (ti + beta), pp.cms_lagrange.(i)))
m_and_t
in
(List.map2 (fun (i, _, _) a -> (i, a)) m_and_t (Array.to_list a), cm_a)
let compute_cm_qa alphas pp a =
snd
@@ compute_and_commit
(fun (i, ai) ->
( ai,
fst
@@ List.fold_left
(fun (acc, j) q ->
(G1.(add acc (mul q.(i) alphas.(j))), j + 1))
(G1.zero, 0)
pp.q ))
a
let compute_b beta k domain f =
Evaluations.init ~degree:(k - 1) k (fun i ->
Scalar.(inverse_exn (f.(i) + beta)))
|> Evaluations.interpolation_fft domain
let compute_qb pp beta k b f =
let f = Evaluations.evaluation_fft pp.domain_2k f in
let b = Evaluations.evaluation_fft pp.domain_2k b in
let f_beta = Evaluations.linear_c ~evaluations:[f] ~add_constant:beta () in
let bf = Evaluations.mul_c ~evaluations:[b; f_beta] () in
let bf_1 =
Poly.(Evaluations.interpolation_fft pp.domain_2k bf - constant Scalar.one)
in
let q, r = Poly.division_xn bf_1 k Scalar.(negate one) in
if Poly.is_zero r then q else raise Entry_not_in_table
let compute_p (pp : prover_public_parameters) transcript k b0 =
Kzg.Degree_check.prove_multi
~max_commit:(pp.n - 1)
~max_degree:(k - 2)
(PC.Public_parameters.get_commit_parameters pp.pc)
transcript
b0
let compute_a0 n a =
Scalar.(List.fold_left (fun acc (_, a) -> acc + a) zero a / of_int n)
let compute_cm_a0 pp etas a =
let a_agg =
List.fold_left
(fun (global_acc, k) a ->
( List.fold_left
(fun acc (i, ai) ->
IMap.update
i
(function
| None -> Some Scalar.(etas.(k) * ai)
| Some a -> Some Scalar.(a + (etas.(k) * ai)))
acc)
global_acc
a,
k + 1 ))
(IMap.empty, 0)
a
|> fst |> IMap.to_seq |> List.of_seq
in
snd @@ compute_and_commit (fun (i, a) -> (a, pp.cms_lagrange_0.(i))) a_agg
let kzg_prove (pp : prover_public_parameters) transcript n
((cm_f, f_aux), (cm_f_agg, f_agg_aux)) (b0_map, f, f_agg, qb) =
let qb_map = SMap.Aggregation.of_list ~n "" qb_name qb in
let f_map = SMap.union_disjoint_list [f; f_agg; b0_map; qb_map] in
let cm_b0, b0_aux = PC.commit pp.pc b0_map in
let cm_qb, qb_aux = PC.commit pp.pc qb_map in
let cm_map = PC.Commitment.(recombine [cm_b0; cm_f; cm_f_agg; cm_qb]) in
let aux =
PC.Commitment.(recombine_prover_aux [b0_aux; f_aux; f_agg_aux; qb_aux])
in
let transcript = Transcript.expand PC.Commitment.t cm_map transcript in
let gamma, transcript = Fr_generation.random_fr transcript in
let b0y = SMap.map (fun p -> Poly.evaluate p gamma) b0_map in
let qby = SMap.map (fun p -> Poly.evaluate p gamma) qb_map in
let fy = SMap.map (fun p -> Poly.evaluate p gamma) f in
let fy_agg = SMap.map (fun p -> Poly.evaluate p gamma) f_agg in
let query = get_pc_query gamma in
let secret = [f_map] in
let cm_aux = [aux] in
let answers =
[SMap.singleton "x" (SMap.union_disjoint_list [b0y; fy; fy_agg; qby])]
in
let proof, transcript =
PC.prove pp.pc transcript secret cm_aux query answers
in
(b0y, fy, fy_agg, cm_map, cm_b0, proof, transcript)
let kzg_verify pp transcript proof k beta =
let transcript =
Transcript.expand PC.Commitment.t proof.cm_b0_qb_f transcript
in
let gamma, transcript = Fr_generation.random_fr transcript in
let n = List.length proof.a0 in
let b0 =
List.mapi
(fun i a0 ->
( SMap.Aggregation.add_prefix ~n ~i "" b0_name,
Scalar.(of_int pp.n * a0 / of_int pp.k) ))
proof.a0
in
let zhy = Scalar.((gamma ** Z.of_int k) + negate one) in
let by =
List.map2
(fun b0y (_, b0) -> Scalar.((b0y * gamma) + b0))
(SMap.values proof.b0y)
b0
in
let qby =
let i = ref (-1) in
SMap.of_list
@@ List.map2
(fun by fy ->
i := !i + 1 ;
( SMap.Aggregation.add_prefix ~n ~i:!i "" qb_name,
Scalar.(((by * (fy + beta)) + negate one) / zhy) ))
by
(SMap.values proof.fy_agg)
in
let cm = [proof.cm_b0_qb_f] in
let query = get_pc_query gamma in
let answers =
[
SMap.singleton
"x"
(SMap.union_disjoint_list [proof.b0y; proof.fy; proof.fy_agg; qby]);
]
in
PC.verify pp.pc transcript cm query answers proof.pc
let verify_f_agg alphas proof =
let nb_wires = Array.length alphas in
let formatted_fy =
let (rev_formatted, last), _ =
SMap.fold
(fun _ f ((acc_global, acc), count) ->
if count = nb_wires - 1 then ((List.rev acc :: acc_global, [f]), 0)
else ((acc_global, f :: acc), count + 1))
proof.fy
(([], []), -1)
in
List.rev (List.rev last :: rev_formatted)
in
List.for_all2
(fun fs f_agg ->
let sum_fs, _ =
List.fold_left
(fun (acc, i) fy -> (Scalar.(acc + (fy * alphas.(i))), i + 1))
(Scalar.zero, 0)
fs
in
Scalar.eq sum_fs f_agg)
formatted_fy
(SMap.values proof.fy_agg)
let prove pp transcript f_map_list =
let k = Array.length (snd @@ SMap.choose (List.hd f_map_list)) in
let n = List.length f_map_list in
let f_map =
SMap.union_disjoint_list
@@ List.mapi
(fun i f_map ->
SMap.map
(fun f ->
Evaluations.(
interpolation_fft pp.domain_k (of_array (k - 1, f))))
f_map
|> SMap.Aggregation.prefix_map ~n ~i "")
f_map_list
in
let cm_f, f_aux = PC.commit pp.pc f_map in
let transcript = Transcript.expand PC.Commitment.t cm_f transcript in
let alpha, transcript = Fr_generation.random_fr transcript in
let alphas = Fr_generation.powers (SMap.cardinal f_map) alpha in
let f_agg_arrays_list =
List.map
(fun f_map ->
Array.init k (fun i ->
fst
@@ SMap.fold
(fun _ f (acc, j) ->
(Scalar.(acc + (alphas.(j) * f.(i))), j + 1))
f_map
(Scalar.zero, 0)))
f_map_list
in
let f_agg_list =
List.map
(fun f ->
Evaluations.(interpolation_fft pp.domain_k (of_array (k - 1, f))))
f_agg_arrays_list
in
let f_agg_map = SMap.Aggregation.of_list ~n "" f_agg_name f_agg_list in
let cm_f_agg, f_agg_aux = PC.commit pp.pc f_agg_map in
let m_and_t, cm_m =
List.map2 (compute_m_and_t_sparse pp) f_map_list f_agg_arrays_list
|> List.split
in
let cm_m, _ = PC.Commitment.of_list pp.pc ~name:m_name cm_m in
let transcript =
Transcript.list_expand PC.Commitment.t [cm_f_agg; cm_m] transcript
in
let beta, transcript = Fr_generation.random_fr transcript in
let a, cm_a = List.map (compute_a pp beta) m_and_t |> List.split in
let cm_a, _ = PC.Commitment.of_list pp.pc ~name:a_name cm_a in
let cm_qa, _ =
List.map (compute_cm_qa alphas pp) a
|> PC.Commitment.of_list pp.pc ~name:qa_name
in
let b = List.map (compute_b beta k pp.domain_k) f_agg_arrays_list in
let b0 =
SMap.of_list
@@ List.mapi
(fun i b ->
(SMap.Aggregation.add_prefix ~n ~i "" b0_name, open_at_0 b))
b
in
let qb = List.map2 (compute_qb pp beta k) b (SMap.values f_agg_map) in
let transcript =
Transcript.list_expand PC.Commitment.t [cm_a; cm_qa] transcript
in
let b0y, fy, fy_agg, cm_b0_qb_f, cm_b0, pc, transcript =
kzg_prove
pp
transcript
n
((cm_f, f_aux), (cm_f_agg, f_agg_aux))
(b0, f_map, f_agg_map, qb)
in
let cm_p, transcript =
Kzg.Degree_check.prove_multi
~max_commit:(pp.n - 1)
~max_degree:(k - 2)
(PC.Public_parameters.get_commit_parameters pp.pc)
transcript
cm_b0
b0
in
let transcript =
Transcript.expand Kzg.Degree_check.Proof.t cm_p transcript
in
let a0 = List.map (compute_a0 pp.n) a in
let transcript = Transcript.list_expand Scalar.t a0 transcript in
let eta, transcript = Fr_generation.random_fr transcript in
let cm_a0 = compute_cm_a0 pp (Fr_generation.powers n eta) a in
( {
cm_f;
cm_f_agg;
cm_a;
cm_a0;
cm_b0;
cm_qa;
cm_m;
cm_p;
a0;
b0y;
fy;
fy_agg;
pc;
cm_b0_qb_f;
},
transcript )
let verify pp transcript proof =
let transcript = Transcript.expand PC.Commitment.t proof.cm_f transcript in
let alpha, transcript = Fr_generation.random_fr transcript in
let alphas = Fr_generation.powers (List.length pp.cm_table) alpha in
let transcript =
Transcript.list_expand
PC.Commitment.t
[proof.cm_f_agg; proof.cm_m]
transcript
in
let beta, transcript = Fr_generation.random_fr transcript in
let transcript =
Transcript.list_expand
PC.Commitment.t
[proof.cm_a; proof.cm_qa]
transcript
in
let f_agg_verif = verify_f_agg alphas proof in
let kzg_verif, transcript = kzg_verify pp transcript proof pp.k beta in
let check_b0, transcript =
Kzg.Degree_check.verify_multi
{srs_0 = pp.srs2_0; srs_n_d = pp.srs2_N_1_k_2}
transcript
proof.cm_b0
proof.cm_p
in
let transcript =
Transcript.expand Kzg.Degree_check.Proof.t proof.cm_p transcript
in
let transcript = Transcript.list_expand Scalar.t proof.a0 transcript in
let eta, transcript = Fr_generation.random_fr transcript in
let etas =
Fr_generation.powers
(PC.Commitment.to_map proof.cm_a |> SMap.cardinal)
eta
in
let cm_a = aggregate_cm proof.cm_a etas in
let cm_qa = aggregate_cm proof.cm_qa etas in
let cm_m = aggregate_cm proof.cm_m etas in
let a0 =
List.fold_left
Scalar.(fun acc a -> (acc * eta) + a)
Scalar.zero
(List.rev proof.a0)
in
let check_a =
let table, _ =
List.fold_left
(fun (acc, i) c -> G2.(add acc (mul c alphas.(i)), i + 1))
(G2.zero, 0)
pp.cm_table
in
Pairing.pairing_check
G1.
[
(negate cm_a, table);
(cm_qa, pp.cm_zv);
(add cm_m (negate (mul cm_a beta)), pp.srs2_0);
]
in
let check_a0 =
Pairing.pairing_check
G1.
[
(add cm_a (negate (mul one a0)), pp.srs2_0);
(negate proof.cm_a0, pp.srs2_1);
]
in
(f_agg_verif && kzg_verif && check_a && check_b0 && check_a0, transcript)
end
include (Internal : Cq_sig)