Source file qcheck_helpers.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
let qcheck_wrap ?verbose ?long ?rand =
List.map (QCheck_alcotest.to_alcotest ?verbose ?long ?rand)
let qcheck_eq ?pp ?cmp ?eq expected actual =
let pass =
match (eq, cmp) with
| Some eq, _ -> eq expected actual
| None, Some cmp -> cmp expected actual = 0
| None, None -> Stdlib.compare expected actual = 0
in
if pass then true
else
match pp with
| None ->
QCheck.Test.fail_reportf
"@[<h 0>Values are not equal, but no pretty printer was provided.@]"
| Some pp ->
QCheck.Test.fail_reportf
"@[<v 2>Equality check failed!@,expected:@,%a@,actual:@,%a@]"
pp
expected
pp
actual
let qcheck_neq ?pp ?cmp ?eq left right =
let pass =
match (eq, cmp) with
| Some eq, _ -> eq left right
| None, Some cmp -> cmp left right = 0
| None, None -> Stdlib.compare left right = 0
in
if not pass then true
else
match pp with
| None ->
QCheck.Test.fail_reportf
"@[<h 0>Values are unexpectedly equal, but no pretty printer was \
provided.@]"
| Some pp ->
QCheck.Test.fail_reportf
"@[<v 2>Inequality check failed!@,left:@,%a@,right:@,%a@]"
pp
left
pp
right
let qcheck_eq_tests ~eq ~arb ~eq_name =
let reflexivity_test =
QCheck.Test.make
~name:(Printf.sprintf "%s is reflexive: forall t, %s t t" eq_name eq_name)
arb
(fun t ->
if eq t t then true
else
QCheck.Test.fail_reportf
"@[<v 2>[%s t t] should hold, but it doesn't!@,\
[t] is printed above if you provided a pretty printer in the \
arbitrary@]"
eq_name)
in
let symmetry_test =
QCheck.Test.make
~name:
(Printf.sprintf
"%s is symmetric: forall t1 t2, %s t1 t2 = %s t2 t1"
eq_name
eq_name
eq_name)
QCheck.(pair arb arb)
(fun (t1, t2) ->
if Bool.equal (eq t1 t2) (eq t2 t1) then true
else
QCheck.Test.fail_reportf
"@[<v 2>[%s t1 t2 = %s t2 t1] should hold, but it doesn't!@,\
[t1] and [t2] are printed above if you provided a pretty printer \
in the arbitrary@]"
eq_name
eq_name)
in
[reflexivity_test; symmetry_test]
let qcheck_eq' ?pp ?cmp ?eq ~expected ~actual () =
qcheck_eq ?pp ?cmp ?eq expected actual
let int64_range_gen a b st =
let range = Int64.sub b a in
let raw_val = Random.State.int64 st range in
let res = Int64.add a raw_val in
assert (a <= res && res <= b) ;
res
let int64_range a b = QCheck.int64 |> QCheck.set_gen (int64_range_gen a b)
let int_strictly_positive_gen = QCheck.Gen.int_range 1
let int64_strictly_positive_gen = int64_range_gen 1L
let endpoint_arb =
let open QCheck in
let open Gen in
let protocol_gen = oneofl ["http"; "https"] in
let path_gen =
let+ path_chunks =
list_size (1 -- 8) (string_size ~gen:(char_range 'a' 'z') (1 -- 8))
in
String.concat "." path_chunks
in
let port_arb =
let+ port = 1 -- 32768 in
":" ^ Int.to_string port
in
let url_string_gen =
let+ protocol, path, opt_part =
triple protocol_gen path_gen (opt port_arb)
in
String.concat "" [protocol; "://"; path; Option.value ~default:"" opt_part]
in
let url_gen =
let+ s = url_string_gen in
Uri.of_string s
in
let print = Uri.to_string in
make ~print url_gen
let rec of_option_gen gen random =
match gen random with None -> of_option_gen gen random | Some a -> a
let of_option_arb QCheck.{gen; print; small; shrink; collect; stats} =
let gen = of_option_gen gen in
let print = Option.map (fun print_opt a -> print_opt (Some a)) print in
let small = Option.map (fun small_opt a -> small_opt (Some a)) small in
let shrink =
Option.map
(fun shrink_opt a f -> shrink_opt (Some a) (Option.iter f))
shrink
in
let collect =
Option.map (fun collect_opt a -> collect_opt (Some a)) collect
in
let stats = List.map (fun (s, f_opt) -> (s, fun a -> f_opt (Some a))) stats in
QCheck.make ?print ?small ?shrink ?collect ~stats gen
let uint16 = QCheck.(0 -- 65535)
let int16 = QCheck.(-32768 -- 32767)
let uint8 = QCheck.(0 -- 255)
let int8 = QCheck.(-128 -- 127)
let string_fixed n = QCheck.(Gen.pure n |> string_of_size)
let bytes_arb = QCheck.(map ~rev:Bytes.to_string Bytes.of_string string)
let of_option_shrink shrink_opt x yield =
Option.iter (fun shrink -> shrink x yield) shrink_opt
let sublist : 'a list -> 'a list QCheck.Gen.t =
let rec take_n n = function
| x :: xs when n > 0 -> x :: take_n (n - 1) xs
| _ -> []
in
fun elems ->
let open QCheck.Gen in
match elems with
| [] -> return []
| _ ->
let* res_len = int_range 0 (List.length elems) in
let+ shuffle = shuffle_l elems in
take_n res_len shuffle
let holey (l : 'a list) : 'a list QCheck.Gen.t =
let open QCheck.Gen in
let+ bools = list_repeat (List.length l) bool in
let rev_result =
List.fold_left
(fun acc (elem, pick) -> if pick then elem :: acc else acc)
[]
(List.combine l bools)
in
List.rev rev_result
module MakeMapArb (Map : Stdlib.Map.S) = struct
open QCheck
let arb_of_size (size_gen : int Gen.t) (key_arb : Map.key arbitrary)
(val_arb : 'v arbitrary) : 'v Map.t arbitrary =
map
~rev:(fun map -> Map.to_seq map |> List.of_seq)
(fun entries -> List.to_seq entries |> Map.of_seq)
(list_of_size size_gen @@ pair key_arb val_arb)
let arb (key_arb : Map.key arbitrary) (val_arb : 'v arbitrary) :
'v Map.t arbitrary =
arb_of_size Gen.small_nat key_arb val_arb
let gen_of_size (size_gen : int Gen.t) (key_gen : Map.key Gen.t)
(val_gen : 'v Gen.t) : 'v Map.t Gen.t =
let open Gen in
map
(fun entries -> List.to_seq entries |> Map.of_seq)
(list_size size_gen @@ pair key_gen val_gen)
let gen (key_gen : Map.key Gen.t) (val_gen : 'v Gen.t) : 'v Map.t Gen.t =
gen_of_size Gen.small_nat key_gen val_gen
let shrink ?key:key_shrink ?value:val_shrink map yield =
let open Shrink in
let kv_list = map |> Map.to_seq |> List.of_seq in
list
~shrink:(pair (of_option_shrink key_shrink) (of_option_shrink val_shrink))
kv_list
(fun smaller_kv_list ->
smaller_kv_list |> List.to_seq |> Map.of_seq |> yield)
end