1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
module Core = Core.Client
module S = Storage
module Input = struct
include Core.Forge.Input
let pos i = i.pos
let amount i = i.amount
let address i = i.address
let is_spent forge_input state xfvk =
let nf =
Core.Nullifier.compute
forge_input.address
xfvk
~amount:forge_input.amount
forge_input.rcm
~position:forge_input.pos
in
S.mem_nullifier state nf
let get state pos vk =
let existing_cm, cipher = S.get state pos in
match of_ciphertext ~pos cipher vk with
| None -> None
| Some (memo, forge_input) ->
if check_cm forge_input existing_cm then Some (memo, forge_input)
else None
let get_out state pos ovk =
let existing_cm, cipher = S.get state pos in
match of_ciphertext_out ~pos cipher ovk existing_cm with
| None -> None
| Some (memo, forge_input) ->
if check_cm forge_input existing_cm then Some (memo, forge_input)
else None
let mem state pos = S.mem state pos
end
type output = Core.Forge.Output.t
let make_output address amount memo = Core.Forge.Output.{address; amount; memo}
let dummy_input anti_replay ctx dummy_witness root =
let rcm = Core.Rcm.random () in
let seed = Tezos_crypto.Hacl.Rand.gen 32 in
let sk = Core.Spending_key.of_seed seed in
let vk = Core.Viewing_key.of_sk sk in
let addr = Core.Viewing_key.dummy_address () in
let nf = Core.Nullifier.compute addr vk ~amount:0L rcm ~position:0L in
let ar = Core.Proving.ar_random () in
let cv, rk, proof_i =
Core.Proving.spend_proof
ctx
vk
sk
addr
rcm
ar
~amount:0L
~root
~witness:dummy_witness
in
let signature = Core.Proving.spend_sig sk ar cv nf rk proof_i anti_replay in
Core.UTXO.{cv; nf; rk; proof_i; signature}
let create_dummy_inputs n state anti_replay ctx =
assert (n >= 0) ;
let not_empty = S.mem state 0L in
if not_empty then
let dummy_witness = S.get_witness state 0L in
let root = S.get_root state in
WithExceptions.Result.get_ok ~loc:__LOC__
@@
List.init ~when_negative_length:() n (fun _ ->
dummy_input anti_replay ctx dummy_witness root)
else []
let dummy_output pctx ~memo_size =
let addr = Core.Viewing_key.dummy_address () in
let amount = 0L in
let o = make_output addr amount (Tezos_crypto.Hacl.Rand.gen memo_size) in
let rcm = Core.Rcm.random () in
let esk = Core.DH.esk_random () in
let cv_o, proof_o = Core.Proving.output_proof pctx esk addr rcm ~amount in
let ciphertext, cm =
Core.Forge.Output.to_ciphertext_without_ovk o rcm esk cv_o
in
Core.UTXO.{cm; proof_o; ciphertext}
let forge_transaction ?(number_dummy_inputs = 0) ?(number_dummy_outputs = 0)
(forge_inputs : Input.t list) (forge_outputs : output list)
(sp : Core.Spending_key.t) (anti_replay : string) ~(bound_data : string)
(state : S.state) =
if number_dummy_inputs < 0 then
raise
(Invalid_argument
"Tezos_sapling.Forge.forge_transaction: number_dummy_inputs is \
negative") ;
if number_dummy_outputs < 0 then
raise
(Invalid_argument
"Tezos_sapling.Forge.forge_transaction: number_dummy_outputs is \
negative") ;
let memo_size = S.get_memo_size state in
List.iter
(fun forge_output ->
assert (Bytes.length Core.Forge.Output.(forge_output.memo) = memo_size))
forge_outputs ;
Core.Proving.with_proving_ctx (fun ctx ->
let vk = Core.Viewing_key.of_sk sp in
let root = S.get_root state in
let real_inputs =
List.map
(fun i ->
let open Input in
let ar = Core.Proving.ar_random () in
let witness = S.get_witness state i.pos in
let cv, rk, proof_i =
Core.Proving.spend_proof
ctx
vk
sp
i.address
i.rcm
ar
~amount:i.amount
~root
~witness
in
let nf =
Core.Nullifier.compute
i.address
vk
~amount:i.amount
i.rcm
~position:i.pos
in
let signature =
Core.Proving.spend_sig sp ar cv nf rk proof_i anti_replay
in
Core.UTXO.{cv; nf; rk; proof_i; signature})
forge_inputs
in
let real_outputs =
List.map
(fun forge_output ->
let rcm = Core.Rcm.random () in
let open Core.Forge.Output in
let esk = Core.DH.esk_random () in
let cv_o, proof_o =
Core.Proving.output_proof
ctx
esk
forge_output.address
rcm
~amount:forge_output.amount
in
let ciphertext, cm = to_ciphertext forge_output cv_o vk rcm esk in
Core.UTXO.{cm; proof_o; ciphertext})
forge_outputs
in
let balance =
let balance_inputs =
List.fold_left
(fun res forge_input -> Int64.add res Input.(forge_input.amount))
0L
forge_inputs
in
List.fold_left
(fun res forge_output ->
Int64.sub res Core.Forge.Output.(forge_output.amount))
balance_inputs
forge_outputs
in
let dummy_inputs =
create_dummy_inputs number_dummy_inputs state anti_replay ctx
in
let inputs = real_inputs @ dummy_inputs in
let dummy_outputs =
WithExceptions.Result.get_ok ~loc:__LOC__
@@
List.init ~when_negative_length:() number_dummy_outputs (fun _ ->
dummy_output ctx ~memo_size)
in
let outputs = real_outputs @ dummy_outputs in
let binding_sig =
Core.Proving.make_binding_sig
ctx
inputs
outputs
~balance
~bound_data
anti_replay
in
Core.UTXO.{inputs; outputs; binding_sig; bound_data; balance; root})
let forge_shield_transaction ?(number_dummy_inputs = 0)
?(number_dummy_outputs = 0) (forge_outputs : output list) (balance : int64)
(anti_replay : string) ~(bound_data : string) (state : S.state) =
if number_dummy_inputs < 0 then
raise
(Invalid_argument
"Tezos_sapling.Forge.forge_shield_transaction: number_dummy_inputs is \
negative") ;
if number_dummy_outputs < 0 then
raise
(Invalid_argument
"Tezos_sapling.Forge.forge_shield_transaction: number_dummy_outputs \
is negative") ;
let memo_size = S.get_memo_size state in
List.iter
(fun forge_output ->
assert (Bytes.length Core.Forge.Output.(forge_output.memo) = memo_size))
forge_outputs ;
Core.Proving.with_proving_ctx (fun ctx ->
let root = S.get_root state in
let real_outputs =
List.map
(fun forge_output ->
let rcm = Core.Rcm.random () in
let open Core.Forge.Output in
let esk = Core.DH.esk_random () in
let cv_o, proof_o =
Core.Proving.output_proof
ctx
esk
forge_output.address
rcm
~amount:forge_output.amount
in
let ciphertext, cm =
to_ciphertext_without_ovk forge_output rcm esk cv_o
in
Core.UTXO.{cm; proof_o; ciphertext})
forge_outputs
in
let balance_outputs =
List.fold_left
(fun res forge_output ->
Int64.sub res Core.Forge.Output.(forge_output.amount))
0L
forge_outputs
in
let dummy_inputs =
create_dummy_inputs number_dummy_inputs state anti_replay ctx
in
let dummy_outputs =
WithExceptions.Result.get_ok ~loc:__LOC__
@@
List.init ~when_negative_length:() number_dummy_outputs (fun _ ->
dummy_output ctx ~memo_size)
in
let outputs = real_outputs @ dummy_outputs in
let binding_sig =
Core.Proving.make_binding_sig
ctx
[]
outputs
~balance:balance_outputs
~bound_data
anti_replay
in
Core.UTXO.
{inputs = dummy_inputs; outputs; binding_sig; bound_data; balance; root})
let forge_shield_transaction_legacy ?(number_dummy_inputs = 0)
?(number_dummy_outputs = 0) (forge_outputs : output list) (balance : int64)
(anti_replay : string) (state : S.state) =
let Core.UTXO.{inputs; outputs; binding_sig; balance; root; bound_data = _} =
forge_shield_transaction
~number_dummy_inputs
~number_dummy_outputs
forge_outputs
balance
anti_replay
~bound_data:""
state
in
Core.UTXO.Legacy.{inputs; outputs; binding_sig; balance; root}
let forge_transaction_legacy ?number_dummy_inputs ?number_dummy_outputs
(forge_inputs : Input.t list) (forge_outputs : output list)
(sp : Core.Spending_key.t) (anti_replay : string) (state : S.state) =
let Core.UTXO.{inputs; outputs; binding_sig; balance; root; _} =
forge_transaction
?number_dummy_inputs
?number_dummy_outputs
forge_inputs
forge_outputs
sp
anti_replay
~bound_data:""
state
in
Core.UTXO.Legacy.{inputs; outputs; binding_sig; balance; root}