1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
open Base
include Bits0
let char_zero = Char.to_int '0'
let char_a = Char.to_int 'a'
let char_A = Char.to_int 'A'
module Raw = struct
let of_bytes bytes ~width =
init_byte ~width ~f:(fun i ->
try Bytes.get bytes i with
| _ -> '\000')
;;
let of_string string ~width =
init_byte ~width ~f:(fun i ->
try string.[i] with
| _ -> '\000')
;;
let to_bytes (t : t) =
let len = (width t + 7) / 8 in
Bytes.subo ~pos:8 ~len (t :> bytes)
;;
let to_string t =
Bytes.unsafe_to_string ~no_mutation_while_string_reachable:(to_bytes t)
;;
end
let rec rsplit_into_n ~n string =
let len = String.length string in
if len <= n
then [ string ]
else
String.drop_prefix string (len - n) :: rsplit_into_n ~n (String.drop_suffix string n)
;;
let int_of_hex_char c =
match c with
| '0' .. '9' -> Char.to_int c - char_zero
| 'a' .. 'f' -> Char.to_int c - char_a + 10
| 'A' .. 'F' -> Char.to_int c - char_A + 10
| _ -> raise_s [%message "Invalid hex char" ~_:(c : char)]
;;
let hex_char_of_int i =
if i >= 0 && i <= 9
then Char.of_int_exn (i + char_zero)
else if i >= 10 && i <= 15
then Char.of_int_exn (i - 10 + char_a)
else raise_s [%message "Cannot convert int to hex char" ~int_value:(i : int)]
;;
let to_hum x = rsplit_into_n ~n:4 x |> List.rev |> String.concat ~sep:"_"
let to_binary_string t =
let width = width t in
String.init width ~f:(fun j ->
let j = width - j - 1 in
let byte = j lsr 3 in
let bit = j land 7 in
let char = unsafe_get_byte t byte |> Char.to_int in
let bit = (char land (1 lsl bit)) lsr bit in
Char.of_int_exn (bit + char_zero))
;;
let to_binary_string_hum t = to_binary_string t |> to_hum
let to_int64 t = unsafe_get_int64 t 0
let to_int t = Int64.to_int_trunc (to_int64 t)
let to_int32 t = Int64.to_int32_trunc (to_int64 t)
let to_int64_array t = Array.init (words t) ~f:(fun i -> unsafe_get_int64 t i)
let to_z ~signedness t =
let module Z = Zarith.Z in
let words = words t in
let rec f word z =
if word < 0
then z
else (
let w = unsafe_get_int64 t word in
let a = Int64.(w lsr 32) in
let z = Z.(logor (shift_left z 32) (of_int64 a)) in
let a = Int64.(w land 0xFFFF_FFFFL) in
let z = Z.(logor (shift_left z 32) (of_int64 a)) in
f (word - 1) z)
in
let z = f (words - 1) Z.zero in
match (signedness : Signedness.t) with
| Unsigned -> z
| Signed ->
let width = width t in
let is_unsigned = Z.(compare (z land shift_left one Int.(width - 1)) zero = 0) in
if is_unsigned then z else Z.(z - shift_left (of_int 1) width)
;;
let to_hex_string ~signedness t =
let rec of_binary ~(signedness : Signedness.t) s =
let hex_of_bin s =
match s with
| "0000" -> "0"
| "0001" -> "1"
| "0010" -> "2"
| "0011" -> "3"
| "0100" -> "4"
| "0101" -> "5"
| "0110" -> "6"
| "0111" -> "7"
| "1000" -> "8"
| "1001" -> "9"
| "1010" -> "a"
| "1011" -> "b"
| "1100" -> "c"
| "1101" -> "d"
| "1110" -> "e"
| "1111" -> "f"
| _ -> raise_s [%message "Invalid string"]
in
let len = String.length s in
match len with
| 0 -> raise_s [%message "[Hex.of_binary] binary value is empty"]
| 1 | 2 | 3 ->
hex_of_bin
((match signedness with
| Signed -> String.init (4 - len) ~f:(fun _ -> s.[0])
| Unsigned -> String.init (4 - len) ~f:(fun _ -> '0'))
^ s)
| 4 -> hex_of_bin s
| _ ->
of_binary ~signedness (String.sub s ~pos:0 ~len:(len - 4))
^ hex_of_bin (String.sub s ~pos:(len - 4) ~len:4)
in
to_binary_string t |> of_binary ~signedness
;;
let of_hum x = String.filter x ~f:(fun c -> not Char.(c = '_'))
let of_binary_string b =
if String.length b = 0
then raise_s [%message "[Constant.of_binary_string] input string is empty"]
else (
let width = String.length b in
let rec to_int8 b acc offset count =
if count = 0
then Char.of_int_exn acc
else (
let char = b.[offset] in
if Char.(char = '0' || char = '1')
then (
let bit = Char.to_int char - char_zero in
to_int8 b ((acc lsl 1) lor bit) (offset + 1) (count - 1))
else
raise_s
[%message
"[Constant.of_binary_string] input must only consist of '1' or '0'"
~got:(b : string)])
in
let rec convert b x index count =
if count = 0
then x
else (
let bits = min 8 count in
Bytes.set x index (to_int8 b 0 (count - bits) bits);
convert b x (index + 1) (count - bits))
in
let data = Stdlib.Bytes.make (words_of_width width lsl shift_bytes_to_words) '\000' in
let data = convert b data 0 width in
init_byte ~width ~f:(fun i -> Bytes.get data i))
;;
let of_binary_string_hum b = of_binary_string (of_hum b)
let of_int64 ~width i =
let sign_extend_value = if Int64.(i < 0L) then -1L else 0L in
init_int64 ~width ~f:(function
| 0 -> i
| _ -> sign_extend_value)
;;
let of_int ~width i = of_int64 ~width (Int64.of_int i)
let of_int32 ~width i = of_int64 ~width (Int64.of_int32 i)
let of_int64_array ~width a =
let array_width = Array.length a lsl log_bits_per_word in
if array_width > Int.round_up ~to_multiple_of:bits_per_word width
then
raise_s
[%message
"[of_int64_array] array to large for given [width]"
(array_width : int)
(width : int)];
init_int64 ~width ~f:(fun i -> a.(i))
;;
let z32mask = Zarith.Z.of_int64 0xFFFF_FFFFL
let of_z ~width z =
let module Z = Zarith.Z in
let t = create width in
let rec f i z width =
if width <= 0 || Z.(equal z zero)
then ()
else (
let a = Z.(to_int64 (logand z z32mask)) in
let z = Z.shift_right z 32 in
let b = Z.(to_int64 (logand z z32mask)) in
let z = Z.shift_right z 32 in
let a = Int64.(a lor (b lsl 32)) in
unsafe_set_int64 t i a;
f (i + 1) z (width - 64))
in
f 0 z width;
mask t;
t
;;
let of_pow2_string ~(signedness : Signedness.t) ~width ~pow2 h =
let to_binary t =
let len = String.length t in
let len_pow = len * pow2 in
let rec make_string = function
| 0 -> ""
| i ->
let c = t.[i - 1] in
let digit =
match c with
| '0' .. '9' -> Char.to_int c - char_zero
| 'A' .. 'Z' -> Char.to_int c - char_A + 10
| 'a' .. 'z' -> Char.to_int c - char_a + 10
| _ -> raise_s [%message "Invalid numeric char" ~_:(c : char)]
in
if digit >= Int.O.(2 ** pow2)
then raise_s [%message "Invalid numeric char" ~_:(c : char)];
make_string (i - 1) ^ (of_int ~width:pow2 digit |> to_binary_string)
in
let result = make_string len in
if width < len_pow
then String.sub result ~pos:(len_pow - width) ~len:width
else
String.init (width - len_pow) ~f:(fun _ ->
match signedness with
| Signed -> result.[0]
| Unsigned -> '0')
^ result
in
to_binary h |> of_binary_string
;;
let of_hex_string ~signedness ~width h = of_pow2_string ~signedness ~width ~pow2:4 h
let of_octal_string ~signedness ~width h = of_pow2_string ~signedness ~width ~pow2:3 h
module type Bit = sig
type t
val vdd : t
val gnd : t
val equal : t -> t -> bool
end
module Make_bit_list (Bit : Bit) = struct
let to_constant bits =
List.map bits ~f:(fun bit -> if Bit.equal bit Bit.vdd then '1' else '0')
|> String.of_char_list
|> of_binary_string
;;
let of_constant t =
to_binary_string t
|> String.to_list
|> List.map ~f:(function
| '0' -> Bit.gnd
| _ -> Bit.vdd)
;;
end
module Bits = Make_bit_list (struct
type t = int
let vdd = 1
let gnd = 0
let equal = Int.equal
end)
let of_bit_list = Bits.to_constant
let to_bit_list = Bits.of_constant
include Comparable
module Expert = struct
let offset_for_data = Bits0.offset_for_data
end
let pp fmt t = Stdlib.Format.fprintf fmt "%s" (to_binary_string_hum t)
module _ = Pretty_printer.Register (struct
type nonrec t = t
let module_name = "Hardcaml.Constant"
let to_string t = to_binary_string_hum t
end)