Source file cyclesim0.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
open Base

module Port_list = struct
  type t = (string * Bits.t ref) list [@@deriving sexp_of]
end

module Traced = struct
  type signal = Signal.t

  let sexp_of_signal = Signal.Type.sexp_of_signal_recursive ~show_uids:false ~depth:1

  type io_port =
    { signal : signal
    ; name : string
    }
  [@@deriving sexp_of]

  type internal_signal =
    { signal : signal
    ; mangled_names : string list
    }
  [@@deriving sexp_of]

  type t =
    { input_ports : io_port list
    ; output_ports : io_port list
    ; internal_signals : internal_signal list
    }
  [@@deriving sexp_of]

  let to_io_port signal =
    let name = List.hd_exn (Signal.names signal) in
    { signal; name }
  ;;
end

type task = unit -> unit

module Node = Cyclesim_lookup.Node
module Reg = Cyclesim_lookup.Reg
module Memory = Cyclesim_lookup.Memory

type ('i, 'o) t =
  { in_ports : Port_list.t
  ; out_ports_before_clock_edge : Port_list.t
  ; out_ports_after_clock_edge : Port_list.t
  ; inputs : 'i
  ; outputs_after_clock_edge : 'o
  ; outputs_before_clock_edge : 'o
  ; reset : task
  ; cycle_check : task
  ; cycle_before_clock_edge : task
  ; cycle_at_clock_edge : task
  ; cycle_after_clock_edge : task
  ; traced : Traced.t
  ; lookup_node : Traced.internal_signal -> Node.t option
  ; lookup_reg : Traced.internal_signal -> Reg.t option
  ; lookup_mem : Traced.internal_signal -> Memory.t option
  ; circuit : Circuit.t option
  ; node_by_name : Traced.internal_signal Map.M(String).t Lazy.t
  ; memory_by_name : Traced.internal_signal Map.M(String).t Lazy.t
  ; reg_by_name : Traced.internal_signal Map.M(String).t Lazy.t
  }
[@@deriving fields ~getters]

let sexp_of_t sexp_of_i sexp_of_o t =
  [%message
    ""
      ~inputs:(t.inputs : i)
      ~outputs_before_clock_edge:(t.outputs_before_clock_edge : o)
      ~outputs_after_clock_edge:(t.outputs_after_clock_edge : o)]
;;

type t_port_list = (Port_list.t, Port_list.t) t

module Config = struct
  type t =
    { is_internal_port : (Signal.t -> bool) option
    ; combinational_ops_database : Combinational_ops_database.t
    ; deduplicate_signals : bool
    ; store_circuit : bool
    }

  let empty_ops_database = Combinational_ops_database.create ()

  let default =
    { is_internal_port = None
    ; combinational_ops_database = empty_ops_database
    ; deduplicate_signals = false
    ; store_circuit = false
    }
  ;;

  let trace how =
    { is_internal_port =
        (match how with
         | `Everything -> Some (Fn.const true)
         | `All_named -> Some (fun s -> not (List.is_empty (Signal.names s)))
         | `Ports_only -> None)
    ; combinational_ops_database = empty_ops_database
    ; deduplicate_signals = false
    ; store_circuit = false
    }
  ;;

  let trace_all = trace `All_named
end

module type Private = Cyclesim0_intf.Private

module Private = struct
  type nonrec ('i, 'o) t = ('i, 'o) t
  type nonrec port_list = Port_list.t
  type nonrec t_port_list = t_port_list
  type nonrec task = task
  type node = Node.t
  type reg = Reg.t
  type memory = Memory.t
  type traced = Traced.t
  type traced_internal_signal = Traced.internal_signal
  type traced_io_port = Traced.io_port

  let by_name predicate (traced : Traced.internal_signal list) =
    List.fold
      traced
      ~init:(Map.empty (module String))
      ~f:(fun map ({ signal; mangled_names } as traced) ->
        if predicate signal
        then
          List.fold_left mangled_names ~init:map ~f:(fun map name ->
            Map.set map ~key:name ~data:traced)
        else map)
  ;;

  let node_by_name =
    by_name (fun s -> (not (Signal.Type.is_mem s)) && not (Signal.Type.is_reg s))
  ;;

  let memory_by_name = by_name (fun s -> Signal.Type.is_mem s)
  let reg_by_name = by_name (fun s -> Signal.Type.is_reg s)

  let create
    ?circuit
    ~in_ports
    ~out_ports_before_clock_edge
    ~out_ports_after_clock_edge
    ~reset
    ~cycle_check
    ~cycle_before_clock_edge
    ~cycle_at_clock_edge
    ~cycle_after_clock_edge
    ~traced
    ~lookup_node
    ~lookup_reg
    ~lookup_mem
    ()
    =
    { in_ports
    ; out_ports_before_clock_edge
    ; out_ports_after_clock_edge
    ; inputs = in_ports
    ; outputs_before_clock_edge = out_ports_before_clock_edge
    ; outputs_after_clock_edge = out_ports_after_clock_edge
    ; reset
    ; cycle_check
    ; cycle_before_clock_edge
    ; cycle_at_clock_edge
    ; cycle_after_clock_edge
    ; traced
    ; lookup_node
    ; lookup_reg
    ; lookup_mem
    ; circuit
    ; node_by_name = lazy (node_by_name traced.internal_signals)
    ; memory_by_name = lazy (memory_by_name traced.internal_signals)
    ; reg_by_name = lazy (reg_by_name traced.internal_signals)
    }
  ;;

  module Step = struct
    type t =
      | Reset
      | Check
      | Before_clock_edge
      | At_clock_edge
      | After_clock_edge
    [@@deriving sexp_of]
  end

  let modify (t : _ t) l =
    List.fold l ~init:t ~f:(fun t ((side : Side.t), (step : Step.t), f) ->
      let apply current =
        match side with
        | Before ->
          fun () ->
            f ();
            current ()
        | After ->
          fun () ->
            current ();
            f ()
      in
      match step with
      | Reset -> { t with reset = apply t.reset }
      | Check -> { t with cycle_check = apply t.cycle_check }
      | Before_clock_edge ->
        { t with cycle_before_clock_edge = apply t.cycle_before_clock_edge }
      | At_clock_edge -> { t with cycle_at_clock_edge = apply t.cycle_at_clock_edge }
      | After_clock_edge ->
        { t with cycle_after_clock_edge = apply t.cycle_after_clock_edge })
  ;;

  let coerce (sim : _ t) ~to_input ~to_output =
    { sim with
      inputs = to_input sim.in_ports
    ; outputs_after_clock_edge = to_output sim.out_ports_after_clock_edge
    ; outputs_before_clock_edge = to_output sim.out_ports_before_clock_edge
    }
  ;;
end